Uncertainty optimization for robust dynamic optical flow estimation

被引:6
|
作者
Willert, Volker [1 ]
Toussaint, Marc [2 ]
Eggert, Julian [1 ]
Koerner, Edgar [1 ]
机构
[1] HRI Europe GmbH, Carl Legien Str 30, D-63073 Offenbach, Germany
[2] TU Berlin, D-10587 Berlin, Germany
关键词
D O I
10.1109/ICMLA.2007.15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a Dynamic Bayesian Network. It realizes a spatiotemporal integration of motion information using a dynamic and robust prior that incorporates spatial and temporal coherence constraints on the flow field. The main contribution is the embedding of these particular assumptions on optical flow evolution into the Bayesian propagation approach that leads to a computationally feasible Two-Filter inference method and is applicable for on- and offline parameter optimization. We analyse the possibility to optimize imposed Student's t-distributed model uncertainties, which are the camera noise and the transition noise. Experiments with synthetic sequences illustrate how the probabilistic framework improves the optical flow estimation because it allows for noisy data, motion ambiguities and motion discontinuities.
引用
收藏
页码:450 / +
页数:2
相关论文
共 50 条
  • [1] Uncertainty Estimation of Dense Optical Flow for Robust Visual Navigation
    Ng, Yonhon
    Li, Hongdong
    Kim, Jonghyuk
    SENSORS, 2021, 21 (22)
  • [2] Robust Optical Flow Estimation
    Sanchez, Javier
    Monzon, Nelson
    Salgado, Agustin
    IMAGE PROCESSING ON LINE, 2013, 3 : 252 - 270
  • [3] Nonparametric Estimation of Uncertainty Sets for Robust Optimization
    Alexeenko, Polina
    Bitar, Eilyan
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1196 - 1203
  • [4] Dynamic consistent correlation-variational approach for robust optical flow estimation
    Heitz, D.
    Heas, P.
    Memin, E.
    Carlier, J.
    EXPERIMENTS IN FLUIDS, 2008, 45 (04) : 595 - 608
  • [5] Dynamic consistent correlation-variational approach for robust optical flow estimation
    D. Heitz
    P. Héas
    E. Mémin
    J. Carlier
    Experiments in Fluids, 2008, 45 : 595 - 608
  • [6] ProbFlow: Joint Optical Flow and Uncertainty Estimation
    Wannenwetsch, Anne S.
    Keuper, Margret
    Roth, Stefan
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 1182 - 1191
  • [7] Robust optical flow estimation for underwater image
    Fang, Ming
    Takauj, Hidenori
    Kaneko, Shun'ichi
    Watanabe, Hidemi
    ISOT: 2009 INTERNATIONAL SYMPOSIUM ON OPTOMECHATRONIC TECHNOLOGIES, 2009, : 185 - 190
  • [8] Robust Optical flow Estimation for Illumination Changes
    Li, Xiuzhi
    Jia, Songmin
    Zhao, Xue
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [9] Robust optical flow estimation based on wavelet
    Zheng, Jia
    Wang, Hongyan
    Pei, Bingnan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (07) : 1303 - 1310
  • [10] Robust optical flow estimation based on wavelet
    Jia Zheng
    Hongyan Wang
    Bingnan Pei
    Signal, Image and Video Processing, 2019, 13 : 1303 - 1310