Information disentanglement based cross-modal representation learning for visible-infrared person re-identification

被引:1
|
作者
Zhu, Xiaoke [1 ]
Zheng, Minghao [1 ]
Chen, Xiaopan [2 ]
Zhang, Xinyu [3 ]
Yuan, Caihong [1 ]
Zhang, Fan [1 ,4 ]
机构
[1] Henan Univ, Sch Comp & Informat Engn, Kaifeng, Peoples R China
[2] Henan Univ, Henan Key Lab Big Data Anal & Proc, Kaifeng, Peoples R China
[3] Wuhan Univ, Sch Comp, Wuhan, Peoples R China
[4] Henan Univ, Henan Engn Res Ctr Intelligent Technol & Applicat, Kaifeng, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-modal feature learning; Information disentanglement; Shared and specific feature learning; Visible-infrared person re-identification;
D O I
10.1007/s11042-022-13669-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visible-infrared person re-identification (VI-ReID) is an important but very challenging task in the automated video surveillance and forensics. Although existing VI-ReID methods have achieved very encouraging results, how to make full use of the useful information contained in cross-modality visible and infrared images has not been well studied. In this paper, we propose an Information Disentanglement based Cross-modal Representation Learning (IDCRL) approach for VI-ReID. Specifically, IDCRL first extracts the shared and specific features from data of each modality by using the shared feature learning module and the specific feature learning module, respectively. To ensure that the shared and specific information can be well disentangled, we impose an orthogonality constraint on the shared and specific features of each modality. To make the shared features extracted from the visible and infrared images of the same person own high similarity, IDCRL designs a shared feature consistency constraint. Furthermore, IDCRL uses a modality-aware loss to ensure that the useful modality-specific features can be extracted from each modality effectively. Then, the obtained shared and specific features are concatenated as the representation of each image. Finally, identity loss function and cross-modal discriminant loss function are employed to enhance the discriminability of the obtained image representation. We conducted comprehensive experiments on the benchmark visible-infrared pedestrian datasets (SYSU-MM01 and RegDB) to evaluate the efficacy of our IDCRL approach. Experimental results demonstrate that IDCRL outperforms the compared state-of-the-art methods. On the SYSU-MM01 dataset, the rank-1 matching rate of our approach reaches 62.35% and 71.64% in the all-search and in-door modes, respectively. On the RegDB dataset, the rank-1 result of our approach reaches 76.32% and 75.49% in the visible to thermal and thermal to visible modes, respectively.
引用
收藏
页码:37983 / 38009
页数:27
相关论文
共 50 条
  • [31] Joint Modal Alignment and Feature Enhancement for Visible-Infrared Person Re-Identification
    Lin, Ronghui
    Wang, Rong
    Zhang, Wenjing
    Wu, Ao
    Bi, Yihan
    SENSORS, 2023, 23 (11)
  • [32] Bidirectional modality information interaction for Visible-Infrared Person Re-identification
    Yang, Xi
    Liu, Huanling
    Wang, Nannan
    Gao, Xinbo
    PATTERN RECOGNITION, 2025, 161
  • [33] Hybrid Modality Metric Learning for Visible-Infrared Person Re-Identification
    Zhang, La
    Guo, Haiyun
    Zhu, Kuan
    Qiao, Honglin
    Huang, Gaopan
    Zhang, Sen
    Zhang, Huichen
    Sun, Jian
    Wang, Jinqiao
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (01)
  • [34] Adversarial Decoupling and Modality-Invariant Representation Learning for Visible-Infrared Person Re-Identification
    Hu, Weipeng
    Liu, Bohong
    Zeng, Haitang
    Hou, Yanke
    Hu, Haifeng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5095 - 5109
  • [35] Stronger Heterogeneous Feature Learning for Visible-Infrared Person Re-Identification
    Hao Wang
    Xiaojun Bi
    Changdong Yu
    Neural Processing Letters, 56
  • [36] Stronger Heterogeneous Feature Learning for Visible-Infrared Person Re-Identification
    Wang, Hao
    Bi, Xiaojun
    Yu, Changdong
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [37] Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identification
    Li, Yongxiang
    Sun, Yuan
    Qin, Yang
    Peng, Dezhong
    Peng, Xi
    Hu, Peng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1937 - 1948
  • [38] Implicit Discriminative Knowledge Learning for Visible-Infrared Person Re-Identification
    Ren, Kaijie
    Zhang, Lei
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 393 - 402
  • [39] Progressive Discriminative Feature Learning for Visible-Infrared Person Re-Identification
    Zhou, Feng
    Cheng, Zhuxuan
    Yang, Haitao
    Song, Yifeng
    Fu, Shengpeng
    ELECTRONICS, 2024, 13 (14)
  • [40] Visible-Infrared Person Re-Identification Via Feature Constrained Learning
    Zhang Jing
    Chen Guangfeng
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)