An operator-valued Lyapunov theorem

被引:2
|
作者
Plosker, Sarah [1 ]
Ramsey, Christopher [1 ,2 ]
机构
[1] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[2] MacEwan Univ, Dept Math & Stat, Edmonton, AB T5J 4S2, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Operator valued measure; Quantum probability measure; Atomic and nonatomic measures; Lyapunov Theorem;
D O I
10.1016/j.jmaa.2018.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize Lyapunov's convexity theorem for classical (scalar-valued) measures to quantum (operator-valued) measures. In particular, we show that the range of a nonatomic quantum probability measure is a weak*-closed convex set of quantum effects (positive operators bounded above by the identity operator) under a sufficient condition on the non-injectivity of integration. To prove the operator-valued version of Lyapunov's theorem, we must first define the notions of essentially bounded, essential support, and essential range for quantum random variables (Borel measurable functions from a set to the bounded linear operators acting on a Hilbert space). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 50 条
  • [31] OPERATOR-VALUED CONVOLUTION ALGEBRAS
    Bagheri-Bardi, G. A.
    Medghalchi, A. R.
    Spronk, N.
    HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (04): : 1023 - 1036
  • [32] ON OPERATOR-VALUED MONOTONE INDEPENDENCE
    Hasebe, Takahiro
    Saigo, Hayato
    NAGOYA MATHEMATICAL JOURNAL, 2014, 215 : 151 - 167
  • [33] OPERATOR-VALUED STOCHASTIC INTEGRALS
    KUO, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (01) : 207 - 210
  • [34] On Operator-valued Measurable Functions
    Fourie, Jan H.
    VECTOR MEASURES, INTEGRATION AND RELATED TOPICS, 2010, 201 : 205 - 214
  • [35] Operator-valued measurable functions
    Bagheri-Bardi, G. A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (01) : 159 - 163
  • [36] AN OPERATOR-VALUED MOMENT PROBLEM
    LEMNETE, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) : 1023 - 1028
  • [37] CONVEXITY OF OPERATOR-VALUED FUNCTIONS
    HSU, IC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A489 - A489
  • [38] On operator-valued Fourier multipliers
    Shangquan Bu
    Science in China Series A, 2006, 49 : 574 - 576
  • [39] OPERATOR-VALUED TENSORS ON MANIFOLDS
    Feizabadi, H.
    Boroojerdian, N.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2016, 42 (05) : 1259 - 1277
  • [40] Operator-valued martingale transforms
    Martínez, T
    Torrea, JL
    TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (03) : 449 - 474