iTRAQ-based proteomic analysis of tetramethylpyrazine inhibition on lipopolysaccharide-induced microglial activation

被引:8
|
作者
Pu, Qiang-Hong
He, Jun-Lin
Wu, Ming-Jun
Li, Jia-Jia
Yang, Zhu
Wang, Ying-Xiong
Yu, Chao [1 ]
机构
[1] Chongqing Med Univ, Inst Life Sci, Chongqing 400016, Peoples R China
基金
中国国家自然科学基金;
关键词
Tetramethylpyrazine; Microglia; Neurodegenerative diseases; ITRAQ; Proteomics; NITRIC-OXIDE SYNTHASE; ALZHEIMERS-DISEASE; NEURODEGENERATIVE DISEASES; OXIDATIVE STRESS; LIGUSTRAZINE PHOSPHATE; CELLS; INFLAMMATION; RECEPTORS; BRAIN; MODEL;
D O I
10.1016/j.lfs.2014.11.016
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Aims: Neurodegenerative diseases are the leading cause of morbidity and mortality worldwide. Several studies have shown that tetramethylpyrazine (TMP) is an effective therapy for neurodegenerative diseases and that it acts by inhibiting the activation of microglial cells in response to inflammatory stimuli. However, the molecular mechanisms underlying the action of TMP remain unknown. Main methods: Proteomic analysis was used to generate novel insights into the mechanism by which TMP inhibits microglial activation, and western blotting was used to validate candidate proteins. Key findings: To identify candidate proteins affected by TMP in lipopolysaccharide-activated microglia, we performed proteomic analysis using iTRAQ labelling coupled with LC TRIPLE-TOF, and we identified 5187 unique proteins. Among these, 266 proteins were differentially expressed and considered putative candidate proteins. Protein annotation revealed that the differentially expressed proteins, such as inducible nitric oxide synthase (iNOS) and ERO1-like protein (ERO1L, might be involved in reducing cellular oxidation in response to stress. Ingenuity pathway analysis revealed that the differentially expressed proteins were involved in a variety of signalling pathways, including liver X receptor/retinoid X receptor (LXR/RXR) activation and the production of nitric oxide and reactive oxygen species in macrophages. Furthermore, one of the differentially expressed protein candidates detected by iTRAQ iNOS, was confirmed by western blotting. Significance: Our data suggest that iTRAQ technology is an effective tool to study the mechanism by which TMP inhibits activated microglia. TMP decreased the expression of LXR/RXR-mediated iNOS, which reduced microglial activation in response to inflammatory stimuli. (c) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
  • [21] iTRAQ-based quantitative proteomic analysis of salt stress in Spica Prunellae
    Zixiu Liu
    Lisi Zou
    Cuihua Chen
    Hui Zhao
    Ying Yan
    Chengcheng Wang
    Xunhong Liu
    Scientific Reports, 9
  • [22] Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis
    Chen, Yong
    Peng, Huai-Min
    Wang, Xiao
    Li, Bo-Qiang
    Long, Man-Yuan
    Tian, Shi-Ping
    TOXINS, 2017, 9 (02):
  • [23] iTRAQ-based proteomic analysis of duck muscle related to lipid oxidation
    Zhang, Muhan
    Wang, Daoying
    Xu, Xinglian
    Xu, Weimin
    Zhou, Guanghong
    POULTRY SCIENCE, 2021, 100 (04)
  • [24] iTRAQ-based proteomic analysis of the rat striatum in response to methamphetamine preconditioning
    Lu, Shuang
    Yang, Yandi
    Liao, Lvshuang
    Yan, Weitao
    Xiong, Kun
    Yan, Jie
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2021, 53 (05) : 636 - 639
  • [25] ITRAQ-based quantitative proteomic analysis of Cynops orientalis limb regeneration
    Tang, Jie
    Yu, Yuan
    Zheng, Hanxue
    Yin, Lu
    Sun, Mei
    Wang, Wenjun
    Cui, Jihong
    Liu, Wenguang
    Xie, Xin
    Chen, Fulin
    BMC GENOMICS, 2017, 18
  • [26] iTRAQ-based comparative proteomic analysis of a fluoranthene-degrading bacterium
    基于iTRAQ技术荧蒽降解菌的比较蛋白质组学分析
    Wang, Hong-Qi (whongqi@126.com), 2018, Chinese Society for Environmental Sciences (38):
  • [27] iTRAQ-based quantitative proteomic analysis of esophageal squamous cell carcinoma
    Deng, Feiyan
    Zhou, Keming
    Li, Qiaoxin
    Liu, Dong
    Li, Mengyan
    Wang, Hui
    Zhang, Wei
    Ma, Yuqing
    TUMOR BIOLOGY, 2016, 37 (02) : 1909 - 1918
  • [28] iTRAQ-based quantitative proteomic analysis of silkworm infected with Beauveria bassiana
    Lu, Dingding
    Xu, Ping
    Hou, Chengxiang
    Li, Ruilin
    Hu, Congwu
    Guo, Xijie
    MOLECULAR IMMUNOLOGY, 2021, 135 : 204 - 216
  • [29] iTRAQ-based quantitative proteomic analysis and bioinformatics study of proteins in retinoblastoma
    Cheng, Yong
    Meng, Qingyu
    Huang, Lvzhen
    Shi, Xuan
    Hou, Jing
    Li, Xiaoxin
    Liang, Jianhong
    ONCOLOGY LETTERS, 2017, 14 (06) : 8084 - 8091
  • [30] iTRAQ-Based Quantitative Proteomic Analysis of the Initiation of Head Regeneration in Planarians
    Geng, Xiaofang
    Wang, Gaiping
    Qin, Yanli
    Zang, Xiayan
    Li, Pengfei
    Geng, Zhi
    Xue, Deming
    Dong, Zimei
    Ma, Kexue
    Chen, Guangwen
    Xu, Cunshuan
    PLOS ONE, 2015, 10 (07):