Machine Learning Phases of Strongly Correlated Fermions

被引:302
|
作者
Ch'ng, Kelvin [1 ]
Carrasquilla, Juan [2 ]
Melko, Roger G. [2 ,3 ]
Khatami, Ehsan [1 ]
机构
[1] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW X | 2017年 / 7卷 / 03期
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
QUANTUM; DIAGRAM;
D O I
10.1103/PhysRevX.7.031038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling). We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Charge frustration and quantum criticality for strongly correlated fermions
    Huijse, Liza
    Halverson, James
    Fendley, Paul
    Schoutens, Kareljan
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [22] A perspective on machine learning and data science for strongly correlated electron problems
    Johnston, Steven
    Khatami, Ehsan
    Scalettar, Richard
    CARBON TRENDS, 2022, 9
  • [23] Machine learning matrix product state ansatz for strongly correlated systems
    Ghosh, Sumanta K. K.
    Ghosh, Debashree
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (06):
  • [24] Restricted Boltzmann machine learning for solving strongly correlated quantum systems
    Nomura, Yusuke
    Darmawan, Andrew S.
    Yamaji, Youhei
    Imada, Masatoshi
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [25] Correlated topological phases and exotic magnetism with ultracold fermions
    Orth, Peter P.
    Cocks, Daniel
    Rachel, Stephan
    Buchhold, Michael
    Le Hur, Karyn
    Hofstetter, Walter
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (13)
  • [26] Magnetovolume Effects in Strongly Correlated Plutonium Phases
    Povzner, A. A.
    Volkov, A. G.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (08) : 743 - 745
  • [27] Magnetovolume Effects in Strongly Correlated Plutonium Phases
    A. A. Povzner
    A. G. Volkov
    Technical Physics Letters, 2018, 44 : 743 - 745
  • [28] Peculiarities of the momentum distribution functions of strongly correlated charged fermions
    Larkin, A. S.
    Filinov, V. S.
    Fortov, V. E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (03)
  • [29] Quantum Monte Carlo simulations of infinitely strongly correlated fermions
    Brunner, M
    Muramatsu, A
    PHYSICAL REVIEW B, 1998, 58 (16) : 10100 - 10103
  • [30] Grassmann phase space dynamics of strongly-correlated fermions
    Al-Hamzawi, Hassan
    Principi, Alessandro
    Di Mauro Villari, Leone
    ANNALS OF PHYSICS, 2023, 459