3D printing of octacalcium phosphate bone substitutes

被引:34
|
作者
Komlev, Vladimir S. [1 ]
Popov, Vladimir K. [2 ]
Mironov, Anton, V [2 ]
Fedotov, Alexander Yu [1 ]
Teterina, Anastasia Yu [1 ]
Smirnov, Igor, V [1 ]
Bozo, Ilya Y. [3 ,4 ,5 ]
Rybko, Vera A. [6 ]
Deev, Roman, V [3 ,7 ]
机构
[1] Russian Acad Sci, AA Baikov Inst Met & Mat Sci, Leninsky Prospect 49, Moscow 119991, Russia
[2] Russian Acad Sci, Inst Laser & Informat Technol, Moscow, Russia
[3] Human Stem Cells Inst, Moscow, Russia
[4] AI Evdokirnov Moscow State Univ Med & Dent, Moscow, Russia
[5] AI Burnazyan Fed Med Biophys Ctr FMBA Russia, Moscow, Russia
[6] NN Blokhin Russian Canc Res Ctr, Inst Carcinogenesis, Moscow, Russia
[7] Kazan Fed Univ, Kazan, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
3D printing; tricalcium phosphate; octacalcium phosphate; ceramics; bone graft; in vivo test; osteoconductivity;
D O I
10.3389/fbioe.2015.00081
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here, we proposed a relatively simple route for 3D printing of octacalcium phosphates (OCP) in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed OCP blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed OCP bone substitutes, which allowed 2.5-time reducing of defect's diameter at 6.5 months in a region where native bone repair is extremely inefficient.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes
    Putra, N. E.
    Leeflang, M. A.
    Klimopoulou, M.
    Dong, J.
    Taheri, P.
    Huan, Z.
    Fratila-Apachitei, L. E.
    Mol, J. M. C.
    Chang, J.
    Zhou, J.
    Zadpoor, A. . A. .
    ACTA BIOMATERIALIA, 2023, 162 : 182 - 198
  • [32] 3D printing of bone and cartilage with polymer materials
    Fan, Daoyang
    Liu, Yafei
    Wang, Yifan
    Wang, Qi
    Guo, Hao
    Cai, Yiming
    Song, Ruipeng
    Wang, Xing
    Wang, Weidong
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [33] Emulsion inks for 3D printing bone grafts
    Cosgriff-Hernandez, Elizabeth
    Sears, Nicholas
    Dhavalikar, Prachi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [34] 3D printing of bone tissue engineering scaffolds
    Wang, Chong
    Huang, Wei
    Zhou, Yu
    He, Libing
    He, Zhi
    Chen, Ziling
    He, Xiao
    Tian, Shuo
    Liao, Jiaming
    Lu, Bingheng
    Wei, Yen
    Wang, Min
    BIOACTIVE MATERIALS, 2020, 5 (01) : 82 - 91
  • [35] On 3D printing of canine femur bone models
    Singh, Rupinder
    Kumar, Abhishek
    Boparai, Kamaljit Singh
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (05): : 3507 - 3522
  • [36] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [37] Application of 3D printing in bone tissue engineering
    Bose, Susmita
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [38] 3D printing of bone scaffolds with hybrid biomaterials
    Oladapo, Bankole I.
    Zahedi, S. A.
    Adeoye, A. O. M.
    COMPOSITES PART B-ENGINEERING, 2019, 158 : 428 - 436
  • [39] 3D Printing of Bioceramics for Bone Tissue Engineering
    Zafar, Muhammad Jamshaid
    Zhu, Dongbin
    Zhang, Zhengyan
    MATERIALS, 2019, 12 (20)
  • [40] 3D Printing of Personalized Artificial Bone Scaffolds
    Jariwala, Shailly H.
    Lewis, Gregory S.
    Bushman, Zachary J.
    Adair, James H.
    Donahue, Henry J.
    3D PRINTING AND ADDITIVE MANUFACTURING, 2015, 2 (02) : 56 - 64