Clonality inference in multiple tumor samples using phylogeny

被引:134
|
作者
Malikic, Salem [1 ]
McPherson, Andrew W. [2 ]
Donmez, Nilgun [3 ]
Sahinalp, Cenk S. [1 ,4 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[2] BC Canc Agcy, Vancouver, BC, Canada
[3] Vancouver Prostate Ctr, Vancouver, BC, Canada
[4] Indiana Univ, Sch Informat & Comp, Bloomington, IN USA
基金
加拿大自然科学与工程研究理事会;
关键词
HETEROGENEITY; EVOLUTION; PROGRESSION;
D O I
10.1093/bioinformatics/btv003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Intra-tumor heterogeneity presents itself through the evolution of subclones during cancer progression. Although recent research suggests that this heterogeneity has clinical implications, in silico determination of the clonal subpopulations remains a challenge. Results: We address this problem through a novel combinatorial method, named clonality inference in tumors using phylogeny (CITUP), that infers clonal populations and their frequencies while satisfying phylogenetic constraints and is able to exploit data from multiple samples. Using simulated datasets and deep sequencing data from two cancer studies, we show that CITUP predicts clonal frequencies and the underlying phylogeny with high accuracy.
引用
收藏
页码:1349 / 1356
页数:8
相关论文
共 50 条
  • [21] Weighted empirical likelihood inference for multiple samples
    Fu, Yuejiao
    Wang, Xiaogang
    Wu, Changbao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1462 - 1473
  • [22] Is multiple-sequence alignment required for accurate inference of phylogeny?
    Hohl, Michael
    Ragan, Mark A.
    SYSTEMATIC BIOLOGY, 2007, 56 (02) : 206 - 221
  • [23] Large scale multiple sequence alignment with simultaneous phylogeny inference
    Parmentier, Gilles
    Trystram, Denis
    Zola, Jaroslaw
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2006, 66 (12) : 1534 - 1545
  • [24] An assessment of computational methods for estimating purity and clonality using genomic data derived from heterogeneous tumor tissue samples
    Yadav, Vinod Kumar
    De, Subhajyoti
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) : 232 - 241
  • [25] Analysis of T-cell clonality pattern in tumor samples of breast cancer patients
    Cikota, BM
    Brankovic-Magic, MV
    Jovic, VS
    Radulovic, SS
    Magic, ZM
    INTERNATIONAL JOURNAL OF BIOLOGICAL MARKERS, 2005, 20 (03): : 177 - 183
  • [26] Clonality of multiple meningiomas
    Stangl, AP
    Wellenreuther, R
    Lenartz, D
    Kraus, JA
    Menon, AG
    Schramm, J
    Wiestler, OD
    vonDeimling, A
    JOURNAL OF NEUROSURGERY, 1997, 86 (05) : 853 - 858
  • [27] Joint Inference of Genome Structure and Content in Heterogeneous Tumor Samples
    McPherson, Andrew
    Roth, Andrew
    Chauve, Cedric
    Sahinalp, S. Cenk
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY (RECOMB 2015), 2015, 9029 : 256 - 258
  • [28] Inference of Tumor Phylogenies from Genomic Assays on Heterogeneous Samples
    Subramanian, Ayshwarya
    Shackney, Stanley
    Schwartz, Russell
    JOURNAL OF BIOMEDICINE AND BIOTECHNOLOGY, 2012,
  • [29] PARAMETERIZED COMPLEXITY FOR FINDING A PERFECT PHYLOGENY FROM MIXED TUMOR SAMPLES
    Sheu, Wen-Horng
    Wang, Biing-Feng
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (03) : 2049 - 2071
  • [30] Complexity and Algorithms for Finding a Perfect Phylogeny from Mixed Tumor Samples
    Hujdurovic, Ademir
    Kacar, Ursa
    Milanic, Martin
    Ries, Bernard
    Tomescu, Alexandru I.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (01) : 96 - 108