Clonality inference in multiple tumor samples using phylogeny

被引:134
|
作者
Malikic, Salem [1 ]
McPherson, Andrew W. [2 ]
Donmez, Nilgun [3 ]
Sahinalp, Cenk S. [1 ,4 ]
机构
[1] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[2] BC Canc Agcy, Vancouver, BC, Canada
[3] Vancouver Prostate Ctr, Vancouver, BC, Canada
[4] Indiana Univ, Sch Informat & Comp, Bloomington, IN USA
基金
加拿大自然科学与工程研究理事会;
关键词
HETEROGENEITY; EVOLUTION; PROGRESSION;
D O I
10.1093/bioinformatics/btv003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Intra-tumor heterogeneity presents itself through the evolution of subclones during cancer progression. Although recent research suggests that this heterogeneity has clinical implications, in silico determination of the clonal subpopulations remains a challenge. Results: We address this problem through a novel combinatorial method, named clonality inference in tumors using phylogeny (CITUP), that infers clonal populations and their frequencies while satisfying phylogenetic constraints and is able to exploit data from multiple samples. Using simulated datasets and deep sequencing data from two cancer studies, we show that CITUP predicts clonal frequencies and the underlying phylogeny with high accuracy.
引用
收藏
页码:1349 / 1356
页数:8
相关论文
共 50 条
  • [1] BAMSE: Bayesian model selection for tumor phylogeny inference among multiple tumor samples
    Toosi, Hosein
    Moeini, Ali
    Hajirasouliha, Iman
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017,
  • [2] BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples
    Hosein Toosi
    Ali Moeini
    Iman Hajirasouliha
    BMC Bioinformatics, 20
  • [3] BAMSE: Bayesian model selection for tumor phylogeny inference among multiple samples
    Toosi, Hosein
    Moeini, Ali
    Hajirasouliha, Iman
    BMC BIOINFORMATICS, 2019, 20 (Suppl 11)
  • [4] Clonality Inference from Single Tumor Samples Using Low-Coverage Sequence Data
    Donmez, Nilgun
    Malikic, Salem
    Wyatt, Alexander W.
    Gleave, Martin E.
    Collins, Colin C.
    Sahinalp, S. Cenk
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (06) : 515 - 523
  • [5] Deconvolution and phylogeny inference of structural variations in tumor genomic samples
    Eaton, Jesse
    Wang, Jingyi
    Schwartz, Russell
    BIOINFORMATICS, 2018, 34 (13) : 357 - 365
  • [6] Summarizing the solution space in tumor phylogeny inference by multiple consensus trees
    Aguse, Nuraini
    Qi, Yuanyuan
    El-Kebir, Mohammed
    BIOINFORMATICS, 2019, 35 (14) : I408 - I416
  • [7] CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples
    Lu, Bingxin
    Curtius, Kit
    Graham, Trevor A.
    Yang, Ziheng
    Barnes, Chris P.
    GENOME BIOLOGY, 2023, 24 (01)
  • [8] CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples
    Bingxin Lu
    Kit Curtius
    Trevor A. Graham
    Ziheng Yang
    Chris P. Barnes
    Genome Biology, 24
  • [9] Tumor phylogeny inference using tree-constrained importance sampling
    Satas, Gryte
    Raphael, Benjamin J.
    BIOINFORMATICS, 2017, 33 (14) : I152 - I160
  • [10] Tumor Phylogeny Topology Inference via Deep Learning
    Azer, Erfan Sadeqi
    Ebrahimabadi, Mohammad Haghir
    Malikic, Salem
    Khardon, Roni
    Sahinalp, S. Cenk
    ISCIENCE, 2020, 23 (11)