GaN growth on Si with rare-earth oxide distributed Bragg reflector structures

被引:6
|
作者
Grinys, T. [1 ]
Dargis, R. [3 ]
Kalpakovaite, A. [1 ]
Stanionyte, S. [2 ]
Clark, A. [3 ]
Arkun, F. E. [3 ]
Reklaitis, I. [1 ]
Tomasiunas, R. [1 ]
机构
[1] Vilnius Univ, Inst Appl Res, LT-10223 Vilnius, Lithuania
[2] Ctr Phys Sci & Technol, LT-02300 Vilnius, Lithuania
[3] Translucent Inc, Palo Alto, CA 94303 USA
关键词
Distributed Bragg reflector; GaN; Metal-organic chemical vapor deposition; Rare-earth oxide; EPITAXY;
D O I
10.1016/j.jcrysgro.2015.03.032
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
In this study, we prepared two types of distributed Bragg reflector structures based on Gd2O3/Si and Er2O3/Si stacks on Si(111) substrates for the growth of GaN. After determining the stability of the structures, GaN was grown in a three stage process according to the metal-organic chemical vapor deposition method. Each stage of the process was controlled mainly by the growth temperature and monitored based on in situ reflectance measurements. The samples with GaN were characterized by atomic force microscopy, X-ray diffraction, and transmission electron microscopy. These analyses demonstrated that the deposited crystalline GaN had a wurtzite structure with a smooth surface. GaN grown on a Gd2O3/Si distributed Bragg reflector had a better GaN crystalline structure than that grown on Er2O3/Si despite the lower thermal stability of the oxide. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [31] Hydrophobicity of rare-earth oxide ceramics
    Azimi, Gisele
    Dhiman, Rajeev
    Kwon, Hyuk-Min
    Paxson, Adam T.
    Varanasi, Kripa K.
    NATURE MATERIALS, 2013, 12 (04) : 315 - 320
  • [32] Nanotubes of rare-earth manganese oxide
    Levy, P
    Leyva, AG
    Troiani, HE
    Sánchez, RD
    APPLIED PHYSICS LETTERS, 2003, 83 (25) : 5247 - 5249
  • [33] Hydrophobicity of rare-earth oxide ceramics
    Azimi G.
    Dhiman R.
    Kwon H.-M.
    Paxson A.T.
    Varanasi K.K.
    Nature Materials, 2013, 12 (4) : 315 - 320
  • [34] RARE-EARTH GROWTH STRUCTURES ON GAAS(110) - CE, SM, AND YB
    LI, YZ
    PATRIN, JC
    CHANDER, M
    WEAVER, JH
    PHYSICAL REVIEW B, 1991, 44 (23): : 12903 - 12907
  • [35] FLUX GROWTH OF DOUBLE OXIDE CRYSTALS OF TANTALUM AND RARE-EARTH ELEMENTS
    YAMASAKI, Y
    SUGITANI, Y
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1979, 52 (02) : 621 - 622
  • [36] AlN/air distributed Bragg reflector by GaN sublimation from microcracks of AlN
    Mitsunari, T.
    Tanikawa, T.
    Honda, Y.
    Yamaguchi, M.
    Amano, H.
    JOURNAL OF CRYSTAL GROWTH, 2013, 370 : 16 - 21
  • [37] Synthesis, crystal growth and structure investigations of rare-earth disilicates and rare-earth oxyapatites
    Christensen, AN
    Hazell, RG
    Hewat, AW
    ACTA CHEMICA SCANDINAVICA, 1997, 51 (01): : 37 - 43
  • [38] Growth of parallel rare-earth silicide nanowire arrays on vicinal Si(001)
    Liu, BZ
    Nogami, J
    NANOTECHNOLOGY, 2003, 14 (08) : 873 - 877
  • [39] Rare-earth doped Si nanostructures for microphotonics
    Pacifici, D
    Franzó, G
    Iacona, F
    Irrera, A
    Boninelli, S
    Miritello, M
    Priolo, F
    NEW MATERIALS FOR MICROPHOTONICS, 2004, 817 : 3 - 14
  • [40] Electronic structure of rare-earth impurities in GaAs and GaN
    Svane, A.
    Christensen, N. E.
    Petit, L.
    Szotek, Z.
    Temmerman, W. M.
    PHYSICAL REVIEW B, 2006, 74 (16)