Color smoothing for RGB-D data using entropy information

被引:40
|
作者
Navarrete, Javier [1 ]
Viejo, Diego [1 ]
Cazorla, Miguel [1 ]
机构
[1] Univ Alicante, Inst Invest Informat, E-03080 Alicante, Spain
关键词
RGB-D data; Entropy; Color smoothing; Noise reduction; PHOTOGRAPHY; FLASH; SLAM;
D O I
10.1016/j.asoc.2016.05.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D sensors are capable of providing 3D points (depth) together with color information associated with each point. These sensors suffer from different sources of noise. With some kinds of RGB-D sensors, it is possible to pre-process the color image before assigning the color information to the 3D data. However, with other kinds of sensors that is not possible: RGB-D data must be processed directly. In this paper, we compare different approaches for noise and artifacts reduction: Gaussian, mean and bilateral filter. These methods are time consuming when managing 3D data, which can be a problem with several real time applications. We propose new methods to accelerate the whole process and improve the quality of the color information using entropy information. Entropy provides a framework for speeding up the involved methods allowing certain data not to be processed if the entropy value of that data is over or under a given threshold. The experimental results provide a way to balance the quality and the acceleration of these methods. The current results show that our methods improve both the image quality and processing time, as compared to the original methods. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [21] Visual Attention and Color Cues for 6D Pose Estimation on Occluded Scenarios Using RGB-D Data
    Vidal, Joel
    Lin, Chyi-Yeu
    Marti, Robert
    SENSORS, 2021, 21 (23)
  • [22] Wiping the mouth using the robot arm with information of RGB-D sensor
    Ikeda, Takeshi
    Makino, Tetsuhiro
    Furuno, Seiji
    Nagata, Fusaomi
    ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (03) : 360 - 367
  • [23] Wiping the mouth using the robot arm with information of RGB-D sensor
    Takeshi Ikeda
    Tetsuhiro Makino
    Seiji Furuno
    Fusaomi Nagata
    Artificial Life and Robotics, 2019, 24 : 360 - 367
  • [24] Recognizing RGB Images by Learning from RGB-D Data
    Chen, Lin
    Li, Wen
    Xu, Dong
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1418 - 1425
  • [25] Multiclass Fruit Classification of RGB-D Images Using Color and Texture Feature
    Rachmawati, Ema
    Supriana, Iping
    Khodra, Masayu Leylia
    INTELLIGENCE IN THE ERA OF BIG DATA, ICSIIT 2015, 2015, 516 : 257 - 268
  • [26] 3D mapping of indoor environments using RGB-D data
    dos Santos, Daniel Rodrigues
    Khoshelham, Kourosh
    BOLETIM DE CIENCIAS GEODESICAS, 2015, 21 (03): : 442 - 464
  • [27] People re-identification using skeleton standard posture and color descriptors from RGB-D data
    Patruno, Cosimo
    Marani, Roberto
    Cicirelli, Grazia
    Stella, Ettore
    D'Orazio, Tiziana
    PATTERN RECOGNITION, 2019, 89 : 77 - 90
  • [28] Salient Regions Detection for Indoor Robots using RGB-D Data
    Jiang, Lixing
    Koch, Artur
    Zell, Andreas
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1323 - 1328
  • [29] RGB-D Flow: Dense 3-D Motion Estimation Using Color and Depth
    Herbst, Evan
    Ren, Xiaofeng
    Fox, Dieter
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 2276 - 2282
  • [30] An adaptive method for registration of RGB-D data
    Basso, Marcos Aurelio
    dos Santos, Daniel Rodrigues
    de Oliveira Junior, Elizeu Martins
    Khoshelham, Kourosh
    BOLETIM DE CIENCIAS GEODESICAS, 2016, 22 (01): : 132 - 156