Improving the accuracy of likelihood-based inference in meta-analysis and meta-regression

被引:13
|
作者
Kosmidis, I. [1 ]
Guolo, A. [2 ]
Varin, C. [3 ]
机构
[1] UCL, Dept Stat Sci, Gower St, London WC1E 6BT, England
[2] Univ Padua, Dept Stat Sci, Via Cesare Battisti 241-243, I-35121 Padua, Italy
[3] Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, Via Torino 150, I-30170 Venice, Italy
关键词
Bias reduction; Heterogeneity; Meta-analysis; Penalized likelihood; Random effect; Restricted maximum likelihood; SIMPLE CONFIDENCE-INTERVAL; BIAS;
D O I
10.1093/biomet/asx001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Random-effects models are frequently used to synthesize information from different studies in meta-analysis. While likelihood-based inference is attractive both in terms of limiting properties and of implementation, its application in random-effects meta-analysis may result in misleading conclusions, especially when the number of studies is small to moderate. The current paper shows how methodology that reduces the asymptotic bias of the maximum likelihood estimator of the variance component can also substantially improve inference about the mean effect size. The results are derived for the more general framework of random-effects meta-regression, which allows the mean effect size to vary with study-specific covariates.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 50 条
  • [21] Household factors and prevalence of squalor: meta-analysis and meta-regression
    Norton, Mike
    Kellett, Stephen
    Huddy, Vyv
    Simmonds-Buckley, Melanie
    BMC PUBLIC HEALTH, 2024, 24 (01)
  • [22] Statistical and measurement pitfalls in the use of meta-regression in meta-analysis
    Schmidt, Frank L.
    CAREER DEVELOPMENT INTERNATIONAL, 2017, 22 (05) : 469 - 476
  • [23] Latitude and Celiac Disease Prevalence: A Meta-Analysis and Meta-Regression
    Celdir, Melis G.
    Jansson-Knodell, Claire L.
    Hujoel, Isabel A.
    Prokop, Larry J.
    Wang, Zhen
    Murad, M. Hassan
    Murray, Joseph A.
    CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2022, 20 (06) : E1231 - E1239
  • [24] Cardiovascular consequences of myocardial bridging: A meta-analysis and meta-regression
    Sorin Hostiuc
    Mugurel Constantin Rusu
    Mihaela Hostiuc
    Ruxandra Irina Negoi
    Ionuț Negoi
    Scientific Reports, 7
  • [25] Advanced methods in meta-analysis: multivariate approach and meta-regression
    van Houwelingen, HC
    Arends, LR
    Stijnen, T
    STATISTICS IN MEDICINE, 2002, 21 (04) : 589 - 624
  • [26] Effects of Cannabinoid Administration for Pain: A Meta-Analysis and Meta-Regression
    Yanes, Julio A.
    McKinnell, Zach E.
    Reid, Meredith A.
    Busler, Jessica N.
    Michel, Jesse S.
    Pangelinan, Melissa M.
    Sutherland, Matthew T.
    Younger, Jarred W.
    Gonzalez, Raul
    Robinson, Jennifer L.
    EXPERIMENTAL AND CLINICAL PSYCHOPHARMACOLOGY, 2019, 27 (04) : 370 - 382
  • [27] Likelihood-based inference for the power regression model
    Martinez-Florez, Guillermo
    Bolfarine, Heleno
    Gomez, Hector W.
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2015, 39 (02) : 187 - 208
  • [28] Diabetes and collision risk. A meta-analysis and meta-regression
    Hostiuc, S.
    Negoi, I.
    Hostiuc, M.
    INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2016, 70 (07) : 554 - 568
  • [29] Household factors and prevalence of squalor: meta-analysis and meta-regression
    Mike Norton
    Stephen Kellett
    Vyv Huddy
    Melanie Simmonds-Buckley
    BMC Public Health, 24
  • [30] An Updated Meta-Analysis and Meta-Regression of Niacin in Cardiovascular Prevention
    Siniawski, Daniel
    Masson, Walter
    Belziti, Cesar
    CIRCULATION, 2014, 130