Improving the accuracy of likelihood-based inference in meta-analysis and meta-regression

被引:13
|
作者
Kosmidis, I. [1 ]
Guolo, A. [2 ]
Varin, C. [3 ]
机构
[1] UCL, Dept Stat Sci, Gower St, London WC1E 6BT, England
[2] Univ Padua, Dept Stat Sci, Via Cesare Battisti 241-243, I-35121 Padua, Italy
[3] Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, Via Torino 150, I-30170 Venice, Italy
关键词
Bias reduction; Heterogeneity; Meta-analysis; Penalized likelihood; Random effect; Restricted maximum likelihood; SIMPLE CONFIDENCE-INTERVAL; BIAS;
D O I
10.1093/biomet/asx001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Random-effects models are frequently used to synthesize information from different studies in meta-analysis. While likelihood-based inference is attractive both in terms of limiting properties and of implementation, its application in random-effects meta-analysis may result in misleading conclusions, especially when the number of studies is small to moderate. The current paper shows how methodology that reduces the asymptotic bias of the maximum likelihood estimator of the variance component can also substantially improve inference about the mean effect size. The results are derived for the more general framework of random-effects meta-regression, which allows the mean effect size to vary with study-specific covariates.
引用
收藏
页码:489 / 496
页数:8
相关论文
共 50 条
  • [1] Improving the accuracy of likelihood-based inference in meta-analysis and meta-regression (vol 104, pg 489, 2017)
    Kosmidis, I.
    Guolo, A.
    Varin, C.
    BIOMETRIKA, 2017, 104 (03) : 751 - 751
  • [3] Improving likelihood-based inference in control rate regression
    Guolo, Annamaria
    STATISTICS IN MEDICINE, 2018, 37 (01) : 157 - 166
  • [4] A likelihood-based sensitivity analysis for publication bias in meta-analysis
    Copas, John B.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2013, 62 (01) : 47 - 66
  • [5] Widowhood and Mortality: A Meta-Analysis and Meta-Regression
    Shor, Eran
    Roelfs, David J.
    Curreli, Misty
    Clemow, Lynn
    Burg, Matthew M.
    Schwartz, Joseph E.
    DEMOGRAPHY, 2012, 49 (02) : 575 - 606
  • [6] Exploring heterogeneity in meta-analysis: Meta-regression analysis
    Spineli, Loukia M.
    Pandis, Nikolaos
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2020, 158 (04) : 623 - 625
  • [7] Moderators analysis in meta-analysis: Meta-regression and subgroups analysis
    Sanchez-Meca, Julio
    Botella, Juan
    CIRUGIA ESPANOLA, 2024, 102 (08): : 446 - 447
  • [8] Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: a meta-analysis and meta-regression
    Guo, X-Y
    Shu, J.
    Fu, X-H
    Chen, X-P
    Zhang, L.
    Ji, M-X
    Liu, X-M
    Yu, T-T
    Sheng, J-Z
    Huang, H-F
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2019, 126 (03) : 311 - 320
  • [9] Diabetes patient education: a meta-analysis and meta-regression
    Ellis, SE
    Speroff, T
    Dittus, RS
    Brown, A
    Pichert, JW
    Elasy, TA
    PATIENT EDUCATION AND COUNSELING, 2004, 52 (01) : 97 - 105
  • [10] A refined method for multivariate meta-analysis and meta-regression
    Jackson, Daniel
    Riley, Richard D.
    STATISTICS IN MEDICINE, 2014, 33 (04) : 541 - 554