Gaussian fields, equilibrium potentials and multiplicative chaos for Dirichlet forms

被引:1
|
作者
Fukushima, Masatoshi [1 ]
Oshima, Yoichi [2 ]
机构
[1] Osaka Univ, Branch Math Sci, Toyonaka, Osaka 5608531, Japan
[2] Kumamoto Univ, Dept Math & Engn, Kumamoto 8608555, Japan
关键词
Gaussian field; Dirichlet form; Equilibrium potential; Gaussian multiplicative chaos; MARKOV PROPERTY;
D O I
10.1007/s11118-020-09858-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Dirichlet form(epsilon,F) on L-2(E;m), letG(epsilon)={X-u;u is an element of F-e} be the Gaussian field indexed by the extended Dirichlet space F-e. We first solve the equilibrium problem for a regular recurrent Dirichlet form epsilon of finding for a closed set B a probability measure mu(B) concentrated on B whose recurrent potential R-mu(B) is an element of F-e is constant q.e. on B(called a Robin constant). We next assume that E is the complex plane C and E is a regular recurrent strongly local Dirichlet form. For the closed disk (B) over bar (x,r)={z is an element of C:vertical bar z-x vertical bar <= r}, let mu(x,r) and f(x,r) be its equilibrium measure and Robin constant. Denote the Gaussian random variable X-R mu(x.r) is an element of G(epsilon) by Y-x,Y-r and let, for a given constant gamma > 0, mu(r) (A,omega)=integral(A) exp(gamma Y-x,Y-r-(1/2)gamma(2)f(x,r))dx. Under a certain condition on the growth rate of f(x,r), we prove the convergence in probability of mu(r)(A,omega) to a random measure (mu) over bar (A,omega) as r down arrow 0. The possible range of gamma to admit a non-trivial limit will then be examined in the cases that (epsilon,F) equals (1/2D(C), H-1(C)) and (a, H-1(C)), where a corresponds to the uniformly elliptic partial differential operator of divergence form.
引用
收藏
页码:285 / 337
页数:53
相关论文
共 50 条
  • [21] Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
    Laurent Chevillard
    Rémi Rhodes
    Vincent Vargas
    Journal of Statistical Physics, 2013, 150 : 678 - 703
  • [22] PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS
    Jego, Antoine
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1597 - 1643
  • [23] The classical compact groups and Gaussian multiplicative chaos
    Forkel, Johannes
    Keating, Jonathan P.
    NONLINEARITY, 2021, 34 (09) : 6050 - 6119
  • [24] THE DISTRIBUTION OF GAUSSIAN MULTIPLICATIVE CHAOS ON THE UNIT INTERVAL
    Remy, Guillaume
    Zhu, Tunan
    ANNALS OF PROBABILITY, 2020, 48 (02): : 872 - 915
  • [25] Multifractal analysis of Gaussian multiplicative chaos and applications
    Bertacco, Federico
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [26] Universal tail profile of Gaussian multiplicative chaos
    Wong, Mo Dick
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (3-4) : 711 - 746
  • [27] Random Hermitian matrices and Gaussian multiplicative chaos
    Nathanaël Berestycki
    Christian Webb
    Mo Dick Wong
    Probability Theory and Related Fields, 2018, 172 : 103 - 189
  • [28] Lee–Yang Property and Gaussian Multiplicative Chaos
    Charles M. Newman
    Wei Wu
    Communications in Mathematical Physics, 2019, 369 : 153 - 170
  • [29] Universal tail profile of Gaussian multiplicative chaos
    Mo Dick Wong
    Probability Theory and Related Fields, 2020, 177 : 711 - 746
  • [30] Gaussian Multiplicative Chaos for Symmetric Isotropic Matrices
    Chevillard, Laurent
    Rhodes, Remi
    Vargas, Vincent
    JOURNAL OF STATISTICAL PHYSICS, 2013, 150 (04) : 678 - 703