Empirical Likelihood Intervals for Conditional Value-at-Risk in Heteroscedastic Regression Models

被引:3
|
作者
Li, Zhouping [2 ]
Gong, Yun [1 ]
Peng, Liang [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
conditional value-at-risk; empirical likelihood; non-parametric regression; VARIANCE FUNCTION ESTIMATION; NONPARAMETRIC REGRESSION; CONFIDENCE-INTERVALS; QUANTAL BIOASSAY;
D O I
10.1111/j.1467-9469.2011.00747.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
. Non-parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value-at-risk based on the non-parametric regression model. A simulation study shows the advantages of the proposed method.
引用
收藏
页码:781 / 787
页数:7
相关论文
共 50 条
  • [31] Recursive Computation of Value-at-Risk and Conditional Value-at-Risk using MC and QMC
    Bardou, Olivier
    Frikha, Noufel
    Pages, Gilles
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2008, 2009, : 193 - 208
  • [32] Dynamic hedging of conditional value-at-risk
    Melnikov, Alexander
    Smirnov, Ivan
    INSURANCE MATHEMATICS & ECONOMICS, 2012, 51 (01): : 182 - 190
  • [33] Simulating Confidence Intervals for Conditional Value-at-Risk via Least-Squares Metamodels
    Lai, Qidong
    Liu, Guangwu
    Zhang, Bingfeng
    Zhang, Kun
    INFORMS JOURNAL ON COMPUTING, 2024,
  • [34] Risk Factor Beta Conditional Value-at-Risk
    Semenov, Andrei
    JOURNAL OF FORECASTING, 2009, 28 (06) : 549 - 558
  • [35] Conditional Value-at-Risk: Optimization approach
    Uryasev, S
    Rockafellar, RT
    STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 : 411 - 435
  • [36] Simulation optimization of conditional value-at-risk
    Hu, Jiaqiao
    Song, Meichen
    Fu, Michael C.
    Peng, Yijie
    IISE TRANSACTIONS, 2024,
  • [37] Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk
    Rockafellar, R. T.
    Royset, J. O.
    Miranda, S. I.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 234 (01) : 140 - 154
  • [38] A residual bootstrap for conditional Value-at-Risk
    Beutner, Eric
    Heinemann, Alexander
    Smeekes, Stephan
    JOURNAL OF ECONOMETRICS, 2024, 238 (02)
  • [39] Asymptotic representations for importance-sampling estimators of value-at-risk and conditional value-at-risk
    Sun, Lihua
    Hong, L. Jeff
    OPERATIONS RESEARCH LETTERS, 2010, 38 (04) : 246 - 251
  • [40] A NOTE ON NONREGULAR LIKELIHOOD FUNCTIONS IN HETEROSCEDASTIC REGRESSION-MODELS
    CRISP, A
    BURRIDGE, J
    BIOMETRIKA, 1994, 81 (03) : 585 - 587