Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles

被引:14
|
作者
Ageely, Eman A. [1 ]
Chilamkurthy, Ramadevi [2 ]
Jana, Sunit [3 ]
Abdullahu, Leonora [3 ]
O'Reilly, Daniel [3 ,5 ]
Jensik, Philip J. [4 ]
Damha, Masad J. [3 ]
Gagnon, Keith T. [1 ,2 ]
机构
[1] Southern Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
[2] Southern Illinois Univ, Sch Med, Dept Biochem & Mol Biol, Carbondale, IL 62901 USA
[3] McGill Univ, Dept Chem, Montreal, PQ, Canada
[4] Southern Illinois Univ, Sch Med, Dept Physiol, Carbondale, IL USA
[5] Univ Massachusetts, Sch Med, RNA Therapeut Inst, Worcester, MA USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ANALYSIS; CRISPR-CAS; IN-VIVO; CRYSTAL-STRUCTURE; OFF-TARGET; ACQUIRED-RESISTANCE; STRUCTURAL BASIS; RNA; DNA; DELIVERY;
D O I
10.1038/s41467-021-26989-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5 ' handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2 '-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2 '-hydroxyl sensitivity. Modified 5 ' pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5 ' pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5 ' pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics. Development of Cas12a for human therapeutics and diagnostics may significantly benefit from, or even require, chemical modification of its guide RNA. Here the authors show that the noncanonical 5 ' pseudoknot structure of the AsCas12a crRNA guide can be heavily modified and still retain very high editing activity in cells and trans cleavage activity in vitro.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An alpha-helical lid guides the target DNA toward catalysis in CRISPR-Cas12a
    Saha, Aakash
    Ahsan, Mohd
    Arantes, Pablo R.
    Schmitz, Michael
    Chanez, Christelle
    Jinek, Martin
    Palermo, Giulia
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [32] The CRISPR-Cas12a Platform for Accurate Genome Editing, Gene Disruption, and Efficient Transgene Integration in Human Immune Cells
    Mohr, Marina
    Damas, Nkerorema
    Gudmand-Hoyer, Johanne
    Zeeberg, Katrine
    Jedrzejczyk, Dominika
    Vlassis, Arsenios
    Morera-Gomez, Marti
    Pereira-Schoning, Sara
    Pus, Urska
    Oliver-Almirall, Anna
    Jensen, Tanja Lyholm
    Baumgartner, Roland
    Weinert, Brian Tate
    Gill, Ryan T.
    Warnecke, Tanya
    ACS SYNTHETIC BIOLOGY, 2023, 12 (02): : 375 - 389
  • [33] CRISPR-Cas12a Base Editors Confer Efficient Multiplexed Genome Editing in Rice.
    Cheng, Yanhao
    Zhang, Yingxiao
    Li, Gen
    Fang, Hong
    Sretenovic, Simon
    Fan, Avery
    Li, Jiang
    Xu, Jianping
    Que, Qiudeng
    Qi, Yiping
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2023, 59 : S140 - S140
  • [34] Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis
    Malzahn, Aimee A.
    Tang, Xu
    Lee, Keunsub
    Ren, Qiurong
    Sretenovic, Simon
    Zhang, Yingxiao
    Chen, Hongqiao
    Kang, Minjeong
    Bao, Yu
    Zheng, Xuelian
    Deng, Kejun
    Zhang, Tao
    Salcedo, Valeria
    Wang, Kan
    Zhang, Yong
    Qi, Yiping
    BMC BIOLOGY, 2019, 17 (1)
  • [35] Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases
    Zhang, Yingxiao
    Cheng, Yanhao
    Fang, Hong
    Roberts, Nathaniel
    Zhang, Liyang
    Vakulskas, Christopher A.
    Niedz, Randall P.
    Culver, James N.
    Qi, Yiping
    FRONTIERS IN GENOME EDITING, 2022, 4
  • [36] Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis
    Shen, Wei
    Zhang, Jun
    Geng, Binan
    Qiu, Mengyue
    Hu, Mimi
    Yang, Qing
    Bao, Weiwei
    Xiao, Yubei
    Zheng, Yanli
    Peng, Wenfang
    Zhang, Guimin
    Ma, Lixin
    Yang, Shihui
    MICROBIAL CELL FACTORIES, 2019, 18 (01)
  • [37] Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis
    Aimee A. Malzahn
    Xu Tang
    Keunsub Lee
    Qiurong Ren
    Simon Sretenovic
    Yingxiao Zhang
    Hongqiao Chen
    Minjeong Kang
    Yu Bao
    Xuelian Zheng
    Kejun Deng
    Tao Zhang
    Valeria Salcedo
    Kan Wang
    Yong Zhang
    Yiping Qi
    BMC Biology, 17
  • [38] A universal and sensitive gene mutation detection method based on CRISPR-Cas12a
    Wang, Huajing
    Liu, Ruijie
    Dong, Kejun
    Zhang, Lei
    Zhang, Jingxi
    Zhang, Xiaoping
    Zhang, Jiarui
    Xiao, Xianjin
    Zhang, Wei
    Wang, Xinyu
    ANALYTICA CHIMICA ACTA, 2023, 1246
  • [39] Hydrophilic/hydrophobic modified microchip for detecting multiple gene doping candidates using CRISPR-Cas12a and RPA
    Zheng, Bingxin
    Yan, Jiayu
    Li, Tao
    Zhao, Yin
    Xu, Zhichen
    Rao, Ruotong
    Zhu, Jiang
    Hu, Rui
    Li, Ying
    Yang, Yunhuang
    BIOSENSORS & BIOELECTRONICS, 2024, 263
  • [40] Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha
    Hou, Senqin
    Yang, Shibin
    Bai, Wenqin
    MICROBIAL CELL FACTORIES, 2025, 24 (01)