Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles

被引:14
|
作者
Ageely, Eman A. [1 ]
Chilamkurthy, Ramadevi [2 ]
Jana, Sunit [3 ]
Abdullahu, Leonora [3 ]
O'Reilly, Daniel [3 ,5 ]
Jensik, Philip J. [4 ]
Damha, Masad J. [3 ]
Gagnon, Keith T. [1 ,2 ]
机构
[1] Southern Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
[2] Southern Illinois Univ, Sch Med, Dept Biochem & Mol Biol, Carbondale, IL 62901 USA
[3] McGill Univ, Dept Chem, Montreal, PQ, Canada
[4] Southern Illinois Univ, Sch Med, Dept Physiol, Carbondale, IL USA
[5] Univ Massachusetts, Sch Med, RNA Therapeut Inst, Worcester, MA USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ANALYSIS; CRISPR-CAS; IN-VIVO; CRYSTAL-STRUCTURE; OFF-TARGET; ACQUIRED-RESISTANCE; STRUCTURAL BASIS; RNA; DNA; DELIVERY;
D O I
10.1038/s41467-021-26989-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas12a is a leading technology for development of model organisms, therapeutics, and diagnostics. These applications could benefit from chemical modifications that stabilize or tune enzyme properties. Here we chemically modify ribonucleotides of the AsCas12a CRISPR RNA 5 ' handle, a pseudoknot structure that mediates binding to Cas12a. Gene editing in human cells required retention of several native RNA residues corresponding to predicted 2 '-hydroxyl contacts. Replacing these RNA residues with a variety of ribose-modified nucleotides revealed 2 '-hydroxyl sensitivity. Modified 5 ' pseudoknots with as little as six out of nineteen RNA residues, with phosphorothioate linkages at remaining RNA positions, yielded heavily modified pseudoknots with robust cell-based editing. High trans activity was usually preserved with cis activity. We show that the 5 ' pseudoknot can tolerate near complete modification when design is guided by structural and chemical compatibility. Rules for modification of the 5 ' pseudoknot should accelerate therapeutic development and be valuable for CRISPR-Cas12a diagnostics. Development of Cas12a for human therapeutics and diagnostics may significantly benefit from, or even require, chemical modification of its guide RNA. Here the authors show that the noncanonical 5 ' pseudoknot structure of the AsCas12a crRNA guide can be heavily modified and still retain very high editing activity in cells and trans cleavage activity in vitro.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles
    Eman A. Ageely
    Ramadevi Chilamkurthy
    Sunit Jana
    Leonora Abdullahu
    Daniel O’Reilly
    Philip J. Jensik
    Masad J. Damha
    Keith T. Gagnon
    Nature Communications, 12
  • [2] Improved genome editing by an engineered CRISPR-Cas12a
    Ma, Enbo
    Chen, Kai
    Shi, Honglue
    Stahl, Elizabeth C.
    Adler, Ben
    Trinidad, Marena
    Liu, Junjie
    Zhou, Kaihong
    Ye, Jinjuan
    Doudna, Jennifer A.
    NUCLEIC ACIDS RESEARCH, 2022, 50 (22) : 12689 - 12701
  • [3] Efficient Gene Editing of CART Cells with CRISPR-Cas12a for Enhanced Antitumor Efficacy
    Siegler, Elizabeth L.
    Simone, Brandon W.
    Sakemura, Reona
    Tapper, Erin E.
    Horvei, Paulina
    Cox, Michelle J.
    Hefazi, Mehrdad
    Roman, Claudia Manriquez
    Can, Ismail
    Schick, Kendall J.
    Ruff, Michael W.
    Ekker, Stephen C.
    Kenderian, Saad S.
    BLOOD, 2020, 136
  • [4] Multiplexed CRISPR-Cas9 and CRISPR-Cas12a Systems for Genome Editing in Plants
    Li, Gen
    Qi, Yiping
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2023, 59 : S67 - S67
  • [5] Rapid, Efficient, and Cost-Effective Gene Editing of Enterococcus faecium with CRISPR-Cas12a
    Chua, Michelle J.
    Collins, James
    MICROBIOLOGY SPECTRUM, 2022, 10 (01):
  • [6] CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum
    Liu, Ke
    Gao, Yang
    Zhen-Hai Li
    Liu, Min
    Feng-Qing Wang
    Dong-Zhi Wei
    NEW BIOTECHNOLOGY, 2022, 66 : 61 - 69
  • [7] Efficient genome editing for Pseudomonas aeruginosa using CRISPR-Cas12a
    Lin, Zhanglin
    Li, Huanhuan
    He, Lan
    Jing, Yanyun
    Pistolozzi, Marco
    Wang, Tingting
    Ye, Yanrui
    GENE, 2021, 790
  • [8] Development of the CRISPR-Cas12a system for editing of Pseudomonas aeruginosa phages
    Chen, Yibao
    Yan, Bingjie
    Chen, Weizhong
    Zhang, Xue
    Liu, Zhengjie
    Zhang, Qing
    Li, Lulu
    Hu, Ming
    Zhao, Xiaonan
    Xu, Xiaohui
    Lv, Qianghua
    Luo, Yanbo
    Cai, Yumei
    Liu, Yuqing
    ISCIENCE, 2024, 27 (07)
  • [9] CRISPR-Cas12a System for Biosensing and Gene Regulation
    Shi, Yuyan
    Fu, Xiaoyi
    Yin, Yao
    Peng, Fangqi
    Yin, Xia
    Ke, Guoliang
    Zhang, Xiaobing
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (08) : 857 - 867
  • [10] Optimization of NLS Architecture to Increase Editing Activity of CRISPR-Cas12a
    Luk, Kevin
    Liu, Pengpeng
    Maitland, Stacy
    Idrizi, Feston
    Leland, Thomas
    Ponnienselvan, Karthikeyan
    Zeng, Jing
    Peters, Michael J.
    Bauer, Daniel E.
    Wolfe, Scot A.
    MOLECULAR THERAPY, 2020, 28 (04) : 459 - 459