OBJECT-BASED BURNED AREA MAPPING USING SENTINEL-2 IMAGERY AND SUPERVISED LEARNING GUIDED BY EMPIRICAL RULES

被引:0
|
作者
Georgopoulos, Nikos [1 ]
Stavrakoudis, Dimitris [1 ]
Gitas, Ioannis Z. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Lab Forest Management & Remote Sensing, Sch Forestry & Nat Environm, POB 248, GR-54124 Thessaloniki, Greece
关键词
Automated burned area mapping; object-based image analysis (OBIA); Sentinel-2; burned area difference indices;
D O I
10.1109/igarss.2019.8900134
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a methodology for burned area mapping using Sentinel-2 imagery, which tries to minimize-and conditionally eliminate-user interaction. The methodology employs an object-based image analysis approach, using the Mean-Shift segmentation algorithm. A small portion of representative image object is automatically selected to form the training set, by means of the fuzzy C-means (FCM) clustering algorithm. Subsequently, a pre-fire and a post-fire image are used for calculating a number of well-known burned area indices and their difference is employed for labeling a portion of the selected training patterns (the most unambiguous ones) through a set of empirical rules. The user can subsequently classify any remaining training patterns or accept the automated classification, which is performed through the Support Vector Machine (SVM) classifier. The latter considers the subset with the most informative object-level features, which are obtained by means of a supervised feature selection algorithm.
引用
收藏
页码:9980 / 9983
页数:4
相关论文
共 50 条
  • [21] Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery
    Wang, Limei
    Jin, Guowang
    Xiong, Xin
    Zhang, Hongmin
    Wu, Ke
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (08)
  • [22] Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine
    Roteta, Ekhi
    Bastarrika, Aitor
    Franquesa, Magi
    Chuvieco, Emilio
    REMOTE SENSING, 2021, 13 (04) : 1 - 30
  • [23] DETECTION OF IRRIGATED AND RAINFED CROPS WITH MACHINE LEARNING MULTIVARIATE TIME-SERIES OBJECT-BASED CLASSIFICATION USING SENTINEL-2 IMAGERY
    Saquella, Simone
    Ferrari, Alvise
    Pampanoni, Valerio
    Laneve, Giovanni
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3438 - 3441
  • [24] Object-Based Multigrained Cascade Forest Method for Wetland Classification Using Sentinel-2 and Radarsat-2 Imagery
    Liu, Huaxin
    Jiang, Qigang
    Ma, Yue
    Yang, Qian
    Shi, Pengfei
    Zhang, Sen
    Tan, Yang
    Xi, Jing
    Zhang, Yibo
    Liu, Bin
    Gao, Xin
    WATER, 2022, 14 (01)
  • [25] Object-based Classification of Izmir Metropolitan City by Using Sentinel-2 Images
    Yilmaz, Elif Ozlem
    Varol, Beril
    Topaloglu, Raziye Hale
    Sertel, Elif
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 407 - 412
  • [26] Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery
    Bolyn, Corentin
    Michez, Adrien
    Gaucher, Peter
    Lejeune, Philippe
    Bonnet, Stephanie
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2018, 22 (03): : 172 - 187
  • [27] OBJECT-BASED CLASSIFICATION OF SENTINEL-2 IMAGERY USING COMPACT TEXTURE UNIT DESCRIPTORS THROUGH GOOGLE EARTH ENGINE
    Djerriri, Khelifa
    Safia, Abdelmounaime
    Adjoudj, Reda
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 105 - 108
  • [28] A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data
    Knopp, Lisa
    Wieland, Marc
    Raettich, Michaela
    Martinis, Sandro
    REMOTE SENSING, 2020, 12 (15)
  • [29] Estimating the Urban Fractional Vegetation Cover Using an Object-Based Mixture Analysis Method and Sentinel-2 MSI Imagery
    Cai, Yaotong
    Zhang, Meng
    Lin, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 341 - 350
  • [30] Tree Species Mapping on Sentinel-2 Satellite Imagery with Weakly Supervised Classification and Object-Wise Sampling
    Illarionova, Svetlana
    Trekin, Alexey
    Ignatiev, Vladimir
    Oseledets, Ivan
    FORESTS, 2021, 12 (10):