Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays

被引:35
|
作者
Zhang, Xiao-Li [1 ]
Li, Hong-Li [1 ,2 ]
Kao, Yonggui [2 ,3 ]
Zhang, Long [1 ]
Jiang, Haijun [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[3] Harbin Inst Technol Weihai, Dept Math, Shandong 264209, Peoples R China
基金
中国博士后科学基金;
关键词
Discrete-time; Fractional-order neural networks; Mittag-Leffler synchronization; Time delays; Adaptive control; FINITE-TIME; STABILITY; RIEMANN; MODEL;
D O I
10.1016/j.amc.2022.127417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the problem of the global Mittag-Leffler synchronization is proposed for a sort of discrete-time fractional-order neural networks (DFNNs) with delays. In the first place, a flesh power law inequality pertaining to fractional difference is constructed by means of integration by parts, Young inequality, and some properties about fractional-order difference. In addition, based on aforesaid inequalities, Lyapunov function theory and properties of nabla Mittag-Leffler function as well as inequality techniques, some plentiful criteria are formed to achieve the global Mittag-Leffler synchronization for the delayed DFNNs via devising novel adaptive controller and delay feedback controller. In the end, numerical modeling is given to demonstrate effectiveness of theoretical verdicts. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Complete synchronization of discrete-time fractional-order BAM neural networks with leakage and discrete delays
    Liu, Jianfei
    Li, Hong-Li
    Hu, Cheng
    Jiang, Haijun
    Cao, Jinde
    NEURAL NETWORKS, 2024, 180
  • [42] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [43] Global Mittag-Leffler Stability and Global Asymptotic ω-Period for Fractional-Order Cohen-Grossberg Neural Networks with Time-Varying Delays
    Jiang, Wangdong
    Li, Zhiying
    Zhang, Yuehong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (12)
  • [44] Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays
    Ali, M. Syed
    Narayanan, G.
    Shekher, Vineet
    Alsaedi, Ahmed
    Ahmad, Bashir
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 83
  • [45] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks With Time-Varying Delay via Hybrid Sliding Mode Control
    Yang, Fangyan
    Chen, Lijuan
    IEEE ACCESS, 2020, 8 : 177471 - 177480
  • [46] Global Mittag-Leffler boundedness and synchronization for fractional-order chaotic systems
    Jian, Jigui
    Wu, Kai
    Wang, Baoxian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [47] Mittag-Leffler stability analysis on variable-time impulsive fractional-order neural networks
    Yang, Xujun
    Li, Chuandong
    Song, Qiankun
    Huang, Tingwen
    Chen, Xiaofeng
    NEUROCOMPUTING, 2016, 207 : 276 - 286
  • [48] O(t-α)-synchronization and Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations
    Chen, Jiejie
    Chen, Boshan
    Zeng, Zhigang
    NEURAL NETWORKS, 2018, 100 : 10 - 24
  • [49] Quasi-synchronization of discrete-time tempered fractional-order memristive neural networks with time delays
    Zhang, Xiao-Li
    Yu, Yongguang
    Wang, Hu
    Nie, Di
    NEUROCOMPUTING, 2025, 619
  • [50] Quasi-synchronization and stabilization of discrete-time fractional-order memristive neural networks with time delays
    Zhang, Xiao-Li
    Li, Hong-Li
    Yu, Yongguang
    Wang, Zuolei
    INFORMATION SCIENCES, 2023, 647