Smooth 1-Dimensional Algebraic Quantum Field Theories

被引:1
|
作者
Benini, Marco [1 ,2 ]
Perin, Marco [3 ]
Schenkel, Alexander [3 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Via Dodecaneso 35, I-16146 Genoa, Italy
[2] INFN, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy
[3] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
来源
ANNALES HENRI POINCARE | 2022年 / 23卷 / 06期
关键词
81Txx; 18F20; 18N10; INVOLUTIVE CATEGORIES;
D O I
10.1007/s00023-021-01132-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper proposes a refinement of the usual concept of algebraic quantum field theories (AQFTs) to theories that are smooth in the sense that they assign to every smooth family of spacetimes a smooth family of observable algebras. Using stacks of categories, this proposal is realized concretely for the simplest case of 1-dimensional spacetimes, leading to a stack of smooth 1-dimensional AQFTs. Concrete examples of smooth AQFTs, of smooth families of smooth AQFTs and of equivariant smooth AQFTs are constructed. The main open problems that arise in upgrading this approach to higher dimensions and gauge theories are identified and discussed.
引用
收藏
页码:2069 / 2111
页数:43
相关论文
共 50 条
  • [11] Homotopy theory of algebraic quantum field theories
    Benini, Marco
    Schenkel, Alexander
    Woike, Lukas
    LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) : 1487 - 1532
  • [12] Gluing Algebraic Quantum Field Theories on Manifolds
    Anastopoulos, Angelos
    Benini, Marco
    ANNALES HENRI POINCARE, 2025,
  • [13] Homotopy theory of algebraic quantum field theories
    Marco Benini
    Alexander Schenkel
    Lukas Woike
    Letters in Mathematical Physics, 2019, 109 : 1487 - 1532
  • [14] Normal bases from 1-dimensional algebraic groups
    Ezome, Tony
    Sall, Mohamadou
    JOURNAL OF SYMBOLIC COMPUTATION, 2020, 101 : 152 - 169
  • [15] UNIQUENESS OF 1-DIMENSIONAL PARABOSON FIELD
    ROBBINS, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 209 (AUG) : 389 - 397
  • [16] Smooth generalized symmetries of quantum field theories
    Gripaios, Ben
    Randal-Williams, Oscar
    Tooby-Smith, Joseph
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 201
  • [17] An algebraic criterion for the ultraviolet finiteness of quantum field theories
    Lemes, VER
    Sarandy, MS
    Sorella, SP
    Ventura, OS
    Vilar, LCQ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (44): : 9485 - 9505
  • [18] A C*-algebraic Approach to Interacting Quantum Field Theories
    Detlev Buchholz
    Klaus Fredenhagen
    Communications in Mathematical Physics, 2020, 377 : 947 - 969
  • [19] ALGEBRAIC ASPECTS OF NONPERTURBATIVE QUANTUM-FIELD THEORIES
    SCHROER, B
    DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 219 - 259
  • [20] A C*-algebraic Approach to Interacting Quantum Field Theories
    Buchholz, Detlev
    Fredenhagen, Klaus
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 377 (02) : 947 - 969