Supported mesoporous Cu/CeO2-δ catalyst for CO2 reverse water-gas shift reaction to syngas

被引:60
|
作者
Zhou, Guilin [1 ,2 ]
Xie, Fengqiong [1 ]
Deng, Lidan [1 ]
Zhang, Guizhi [1 ]
Xie, Hongmei [1 ]
机构
[1] Chongqing Technol & Business Univ, Dept Chem Engn, Chongqing 400067, Peoples R China
[2] Minist Educ, Engn Res Ctr Waste Oil Recovery Technol & Equipme, Chongqing 400067, Peoples R China
关键词
Mesoporous Cu/CeO2-delta catalyst; Cu-0-CeO2-delta interface structure; Synergistic effect; RWGS reaction; CO2; CO; CUO-CEO2; CATALYSTS; HIGH-PERFORMANCE; CEO2; REDUCTION; CUO/CEO2; OXIDATION; OXIDES; COPRECIPITATION; HYDROGENATION; COMBUSTION;
D O I
10.1016/j.ijhydene.2020.02.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design and development of a high performance hydrogenation catalyst is an important challenge in the utilization of CO2 as resources. The catalytic performances of the supported catalyst can be effectively improved through the interaction between the active components and the support materials. The obtained results demonstrated that the oxygen vacancies and active Cu-0 species as active sites can be formed in the CeO2-delta-catalysts by the H-2 reduction at 400 degrees C. The synergistic effect of the surface oxygen vacancies and active Cu-0 species, and Cu-0-CeO2-delta interface structure enhanced catalytic activity of the supported xCu/CeO2-delta catalysts. The electronic effect between Cu and Ce species boosted the adsorption and activation performances of the reactant CO2 and H-2 molecules on the corresponding Cu/CeO2-delta catalyst. The Cu/CeO2-delta catalyst with the Cu loading of 8.0 wt% exhibited the highest CO2 conversion rate in the RWGS reaction, reaching 1.38 mmol.g(cat)(-1) min(-1) at 400 degrees C. Its excellent catalytic performance in the RWGS reaction was related to the complete synergistic interaction between the active species via Ce3+-square-Cu-0 (square: oxygen vacancy). The Cu/CeO2-delta composite material is a superior catalyst for the RWGS reaction because of its high CO2 conversion and 100% CO selectivity. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:11380 / 11393
页数:14
相关论文
共 50 条
  • [21] Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst
    Chen, CS
    Cheng, WH
    Lin, SS
    CATALYSIS LETTERS, 2000, 68 (1-2) : 45 - 48
  • [22] CuOx/CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction
    Ronda-Lloret, Maria
    Rico-Frances, Soledad
    Sepulveda-Escribano, Antonio
    Ramos-Fernandez, Enrique V.
    APPLIED CATALYSIS A-GENERAL, 2018, 562 : 28 - 36
  • [23] Optimization of Cobalt Loading in Co-CeO2 Catalyst for the High Temperature Water-Gas Shift Reaction
    Lee, Yeol-Lim
    Jha, Ajay
    Jang, Won-Jun
    Shim, Jae-Oh
    Jeon, Kyung-Won
    Na, Hyun-Suk
    Kim, Hak-Min
    Lee, Da-We
    Yoo, Seong-Yeun
    Jeon, Byong-Hun
    Bae, Jong Wook
    Roh, Hyun-Seog
    TOPICS IN CATALYSIS, 2017, 60 (9-11) : 721 - 726
  • [24] Effect of Copper-based Catalyst Support on Reverse Water-Gas Shift Reaction (RWGS) Activity for CO2 Reduction
    Jurkovic, Damjan Lasic
    Pohar, Andrej
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (05) : 973 - 980
  • [25] Probing Hydrophobization of a Cu/ZnO Catalyst for Suppression of Water-Gas Shift Reaction in Syngas Conversion
    Tan, Minghui
    Tian, Sha
    Zhang, Tao
    Wang, Kangzhou
    Xiao, Liwei
    Liang, Jiaming
    Ma, Qingxiang
    Yang, Guohui
    Tsubaki, Noritatsu
    Tan, Yisheng
    ACS CATALYSIS, 2021, 11 (08) : 4633 - 4643
  • [26] CO2 mineral sequestration integrated with water-gas shift reaction
    Zevenhoven, Ron
    Virtanen, Mikael
    ENERGY, 2017, 141 : 2484 - 2489
  • [27] Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction
    Ma, Ying
    Guo, Zhanglong
    Jiang, Qian
    Wu, Kuang-Hsu
    Gong, Huimin
    Liu, Yuefeng
    JOURNAL OF ENERGY CHEMISTRY, 2020, 50 (50): : 37 - 43
  • [28] Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction
    Ying Ma
    Zhanglong Guo
    Qian Jiang
    Kuang-Hsu Wu
    Huimin Gong
    Yuefeng Liu
    Journal of Energy Chemistry, 2020, 50 (11) : 37 - 43
  • [29] Study on Cu-Fe/CeO2 bimetallic catalyst for reverse water gas shift reaction
    Chen, Liang
    Wu, Dirui
    Wang, Chengzhang
    Ji, Mengxin
    Wu, Zhengshun
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (03):
  • [30] Cu/MgO Reverse Water Gas Shift Catalyst with Unique CO2 Adsorption Behaviors
    Tsai, Ding-Huei
    Wu, Tung-Ta
    Lin, Hung-Chin
    Chueh, Lu-Yu
    Lin, Kun-Han
    Yu, Wen-Yueh
    Pan, Yung-Tin
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (06)