FOOD: Fast Out-Of-Distribution Detector

被引:1
|
作者
Amit, Guy [1 ]
Levy, Moshe [1 ]
Rosenberg, Ishai [1 ]
Shabtai, Asaf [1 ]
Elovici, Yuval [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Software & Informat Syst Engn, Beer Sheva, Israel
关键词
Neural network; Out-of-Distribution; Representations;
D O I
10.1109/IJCNN52387.2021.9533465
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) perform well at classifying inputs associated with the classes they have been trained on, which are known as in-distribution inputs. However, out-of-distribution (OOD) inputs pose a great challenge to DNNs and consequently represent a major risk when DNNs are implemented in safety-critical systems. Extensive research has been performed in the domain of OOD detection. However, current state-of-theart methods for OOD detection suffer from at least one of the following limitations: (1) increased inference time - this limits existing methods' applicability to many real-world applications, and (2) the need for OOD training data - such data can be difficult to acquire and may not be representative enough, thus limiting the ability of the OOD detector to generalize. In this paper, we propose FOOD - Fast Out-Of-Distribution detector an extended DNN classifier capable of efficiently detecting OOD samples with minimal inference time overhead. Our architecture features a DNN with a final Gaussian layer combined with the log likelihood ratio statistical test and an additional output neuron for OOD detection. Instead of using real OOD data, we use a novel method to craft artificial OOD samples from in-distribution data, which are used to train our OOD detector neuron. We evaluate FOOD's detection performance on the SVHN, CIFAR-10, and CIFAR-100 datasets. Our results demonstrate that in addition to achieving state-of-the-art performance, FOOD is fast and applicable to real-world applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [42] Out-of-distribution generalization for learning quantum dynamics
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Ezzell, Nicholas
    Gibbs, Joe
    Sornborger, Andrew T.
    Cincio, Lukasz
    Coles, Patrick J.
    Holmes, Zoe
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [43] Reliable Out-of-Distribution Recognition of Synthetic Images
    Maier, Anatol
    Riess, Christian
    JOURNAL OF IMAGING, 2024, 10 (05)
  • [44] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [45] On the Adversarial Robustness of Out-of-distribution Generalization Models
    Zou, Xin
    Liu, Weiwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [46] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [47] Ensemble-Based Out-of-Distribution Detection
    Yang, Donghun
    Mai Ngoc, Kien
    Shin, Iksoo
    Lee, Kyong-Ha
    Hwang, Myunggwon
    ELECTRONICS, 2021, 10 (05) : 1 - 12
  • [48] Why Out-of-Distribution Detection Experiments Are Not Reliable - Subtle Experimental Details Muddle the OOD Detector Rankings
    Szyc, Kamil
    Walkowiak, Tomasz
    Maciejewski, Henryk
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2078 - 2088
  • [49] LEARNING WITH OUT-OF-DISTRIBUTION DATA FOR AUDIO CLASSIFICATION
    Iqbal, Turab
    Cao, Yin
    Kong, Qiuqiang
    Plumbley, Mark D.
    Wang, Wenwu
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 636 - 640
  • [50] On the Out-of-distribution Generalization of Probabilistic Image Modelling
    Zhang, Mingtian
    Zhang, Andi
    McDonagh, Steven
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34