Nonlinear Structural Finite Element Model Updating Using Stochastic Filtering

被引:2
|
作者
Astroza, Rodrigo [1 ,2 ]
Ebrahimian, Hamed [1 ]
Conte, Joel P. [1 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[2] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Santiago, Chile
关键词
Damage identification; Nonlinear finite element model; Model updating; Stochastic filter; Structural health monitoring; IDENTIFICATION; DAMAGE;
D O I
10.1007/978-3-319-15224-0_7
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification purposes. The unscented Kalman filter (UKF) is used as parameter estimation technique to identify the unknown time-invariant parameters of the FE model. A two-dimensional, 3-bay, 3-story steel moment frame is used to verify the proposed framework. The steel frame is modeled using fiber-section beam-column elements with distributed plasticity and is subjected to a ground motion recorded during the 1989 Loma Prieta earthquake. The results show that the proposed methodology provides accurate estimates of the unknown material parameters of the nonlinear FE model.
引用
收藏
页码:67 / 74
页数:8
相关论文
共 50 条
  • [21] Performance comparison of Kalman-based filters for nonlinear structural finite element model updating
    Astroza, Rodrigo
    Ebrahimian, Hamed
    Conte, Joel P.
    JOURNAL OF SOUND AND VIBRATION, 2019, 438 : 520 - 542
  • [22] Adaptive Kalman filters for nonlinear finite element model updating
    Song, Mingming
    Astroza, Rodrigo
    Ebrahimian, Hamed
    Moaveni, Babak
    Papadimitriou, Costas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143 (143)
  • [23] Updating of a Nonlinear Finite Element Model Using Discrete-Time Volterra Series
    Bussetta, Philippe
    Shiki, Sidney Bruce
    da Silva, Samuel
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2017, 14 (07): : 1183 - 1199
  • [24] Objective functions for finite element model updating in structural dynamics
    Jaishi, B
    Ren, WX
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2004, : 50 - 55
  • [25] Structural characteristic responses for finite element model updating of structures
    Zhou, Linren
    Wang, Lei
    Ou, Jinping
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2014, 2014, 9061
  • [26] A new method for finite element model updating in structural dynamics
    Zapico-Valle, J. L.
    Alonso-Camblor, R.
    Gonzalez-Martinez, M. P.
    Garcia-Dieguez, M.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (07) : 2137 - 2159
  • [27] Review of finite element model updating methods for structural applications
    Ereiz, Suzana
    Duvnjak, Ivan
    Jimenez-Alonso, Javier Fernando
    STRUCTURES, 2022, 41 : 684 - 723
  • [28] A novel approach for stochastic finite element model updating and parameter estimation
    Ma, Tianzheng
    Zhang, Yimin
    Huang, Xianzhen
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (18) : 3329 - 3342
  • [29] Robust identification of parameters uncertainty in stochastic finite element model updating
    Sharma, N.
    Modak, S. V.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 5231 - 5245
  • [30] Structural damage detection using finite element model updating with evolutionary algorithms: a survey
    Nizar Faisal Alkayem
    Maosen Cao
    Yufeng Zhang
    Mahmoud Bayat
    Zhongqing Su
    Neural Computing and Applications, 2018, 30 : 389 - 411