Quantitative trait loci (QTL) are easily studied in a biallelic system. Such a system required the cross of two inbred lines presumably fixed for alternative alleles of the QTL. However, development of inbred lines call be time consuming and cost ineffective for species with long generation intervals and severe inbreeding depression. In addition, restriction of the investigation to a biallelic system can sometimes be misleading because many potentially important allelic interactions do not have a chance to express and thus fail to be detected. A complicated mating design involving multiple alleles mimics the actual breeding system. However, it is difficult to develop the statistical model and algorithm using the classical maximum-likelihood method. In this study, we investigate the application of a Bayesian method implemented via the Markov chain Monte Carlo (MCMC) algorithm to QTL mapping under arbitrarily complicated mating designs. We develop the method under a mixed-model framework where the genetic values of founder alleles are treated as random and the nongenetic effects are treated as fixed. With the MCMC algorithm, we first draw the gene flows from the founders to the descendants fur each QTL and then draw samples of the genetic parameters. Finally, we are able to simultaneously infer the posterior distribution of the number, the additive and dominance variances, and the chromosomal locations of all identified QTL.
机构:
Heilongjiang August First Land Reclamat Univ, Life Sci Coll, Daqing 163319, Peoples R China
China Agr Univ, Dept Anim Breeding & Genet, Coll Anim Sci & Technol, Beijing 100193, Peoples R ChinaHeilongjiang August First Land Reclamat Univ, Life Sci Coll, Daqing 163319, Peoples R China
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R ChinaUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Yuan, Zhongshang
Zou, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Zou, Fei
Liu, Yanyan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R ChinaUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
机构:
Univ Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USAUniv Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USA
Yi, N.
Shriner, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USAUniv Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USA
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Huang, Hanwen
Zhou, Haibo
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Zhou, Haibo
Cheng, Fuxia
论文数: 0引用数: 0
h-index: 0
机构:
Illinois State Univ, Dept Math, Normal, IL 61790 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Cheng, Fuxia
Hoeschele, Ina
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
Hoeschele, Ina
Zou, Fei
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USAUniv N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA