Simulations of future particle accelerators: issues and mitigations

被引:4
|
作者
Sagan, D. [1 ]
Berz, M. [2 ]
Cook, N. M. [3 ]
Hao, Y. [4 ]
Hoffstaetter, G. [1 ]
Huebl, A. [5 ]
Huang, C-K [6 ]
Langston, M. H. [7 ]
Mayes, C. E. [8 ]
Mitchell, C. E. [5 ]
Ng, C-K [8 ]
Qiang, J. [5 ]
Ryne, R. D. [5 ]
Scheinker, A. [6 ]
Stern, E. [9 ]
Vay, J-L [5 ]
Winklehner, D. [10 ]
Zhang, H. [11 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Michigan State Univ, E Lansing, MI 48824 USA
[3] RadiaSoft LLC, Boulder, CO 80301 USA
[4] Brookhaven Natl Lab, 98 Rochester St, Upton, NY 11973 USA
[5] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[6] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[7] Reservoir Labs Inc, New York, NY 10012 USA
[8] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[9] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[10] MIT, Cambridge, MA 02138 USA
[11] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA
基金
美国国家科学基金会;
关键词
Beam dynamics; Beam Optics; Simulation methods and programs; Accelerator modelling and simulations (multi-particle dynamicssingle-particle dy-namics); EXPANSION; ALGORITHM; EQUATIONS; SOLVER;
D O I
10.1088/1748-0221/16/10/T10002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The ever increasing demands placed upon machine performance have resulted in the need for more comprehensive particle accelerator modeling. Computer simulations are key to the success of particle accelerators. Many aspects of particle accelerators rely on computer modeling at some point, sometimes requiring complex simulation tools and massively parallel supercomputing. Examples include the modeling of beams at extreme intensities and densities (toward the quantum degeneracy limit), and with ultra-fine control (down to the level of individual particles). In the future, adaptively tuned models might also be relied upon to provide beam measurements beyond the resolution of existing diagnostics. Much time and effort has been put into creating accelerator software tools, some of which are highly successful. However, there are also shortcomings such as the general inability of existing software to be easily modified to meet changing simulation needs. In this paper possible mitigating strategies are discussed for issues faced by the accelerator community as it endeavors to produce better and more comprehensive modeling tools. This includes lack of coordination between code developers, lack of standards to make codes portable and/or reusable, lack of documentation, among others.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators
    Bruhwiler, DL
    Dimitrov, DA
    Cary, JR
    Esarey, E
    Leemans, W
    Giacone, RE
    PHYSICS OF PLASMAS, 2003, 10 (05) : 2022 - 2030
  • [42] Particle-in-cell code BEAMPATH for beam dynamics simulations in linear accelerators and beamlines
    Batygin, YK
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 539 (03): : 455 - 489
  • [43] Biomedical Research Programs at Present and Future High-Energy Particle Accelerators
    Patera, Vincenzo
    Prezado, Yolanda
    Azaiez, Faical
    Battistoni, Giuseppe
    Bettoni, Diego
    Brandenburg, Sytze
    Bugay, Aleksandr
    Cuttone, Giacomo
    Dauvergne, Denis
    de France, Gilles
    Graeff, Christian
    Haberer, Thomas
    Inaniwa, Taku
    Incerti, Sebastien
    Nasonova, Elena
    Navin, Alahari
    Pullia, Marco
    Rossi, Sandro
    Vandevoorde, Charlot
    Durante, Marco
    FRONTIERS IN PHYSICS, 2020, 8
  • [44] Particle accelerators in Mexico
    De La Paz Ramos Lara, Maria
    HISTORICAL STUDIES IN THE PHYSICAL AND BIOLOGICAL SCIENCES, 2006, 36 : 297 - 309
  • [45] Editorial: Novel ideas for accelerators, particle detection and data challenges at future colliders
    Tricoli, Alessandro
    Azzi, Patrizia
    Merkel, Petra
    Shiltsev, Vladimir
    FRONTIERS IN PHYSICS, 2023, 11
  • [46] PARTICLE DETECTORS AT ACCELERATORS
    K.A.Olive
    K.Agashe
    C.Amsler
    M.Antonelli
    J.-F.Arguin
    D.M.Asner
    H.Baer
    H.R.Band
    R.M.Barnett
    T.Basaglia
    C.W.Bauer
    J.J.Beatty
    V.I.Belousov
    J.Beringer
    G.Bernardi
    S.Bethke
    H.Bichsel
    O.Biebe
    E.Blucher
    S.Blusk
    G.Brooijmans
    O.Buchmueller
    V.Burkert
    M.A.Bychkov
    R.N.Cahn
    M.Carena
    A.Ceccucci
    A.Cerr
    D.Chakraborty
    M.-C.Chen
    R.S.Chivukula
    K.Copic
    G.Cowan
    O.Dahl
    G.D’Ambrosio
    T.Damour
    D.de Florian
    A.de Gouvea
    T.DeGrand
    P.de Jong
    G.Dissertor
    B.A.Dobrescu
    M.Doser
    M.Drees
    H.K.Dreiner
    D.A.Edwards
    S.Eidelman
    J.Erler
    V.V.Ezhela
    W.Fetscher
    Chinese Physics C, 2014, (09) : 413 - 443
  • [47] AUSTRALIAS PARTICLE ACCELERATORS
    TITTERTON, EW
    NUCLEONICS, 1952, 10 (01): : 78 - 78
  • [48] Test bench of a 100 Gbps radiation hardened link for future particle accelerators
    Martina, F.
    Baron, S.
    Moreira, P.
    Baszczyk, M.
    Biereigel, S.
    Klekotko, A.
    Kulis, S.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (02)
  • [49] Safety for Particle Accelerators
    Cossairt, J. Donald
    HEALTH PHYSICS, 2021, 121 (03): : 250 - 250