Does PM10 influence the prediction of PM2.5?

被引:2
|
作者
Choudhary, Rashmi [1 ]
Agarwal, Amit [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Civil Engn, Roorkee, Uttar Pradesh, India
关键词
air pollution; particulate matter; deep learning; prediction;
D O I
10.1109/SCSP54748.2022.9792544
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urbanization has led to a sharp increase in exposure to air pollutants in developing regions & the New Delhi capital of India is no exception to it. This paper proposes an approach where the Delhi region is divided into hexagonal bins of different sizes. Then the spatial interpolation is performed using Inverse distance weighting for pollutants and Ordinary Kriging for the meteorological parameters at the centroid of each bin. A hybrid deep learning architecture developed using convolutional neural network, and long short term memory is used for multivariate time series regression and prediction for PM2.5. Two different models are developed, one considering PM10 as a predictor variable and another without considering PM10. The results from both models are compared using various performance matrices, and experimental predicted results show that it improves prediction performance when PM10 is taken into account.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] PM2.5, PM10 and bronchiolitis severity: A cohort study
    Milani, Gregorio P.
    Cafora, Marco
    Favero, Chiara
    Luganini, Anna
    Carugno, Michele
    Lenzi, Erica
    Pistocchi, Anna
    Pinatel, Eva
    Pariota, Luigi
    Ferrari, Luca
    Bollati, Valentina
    PEDIATRIC ALLERGY AND IMMUNOLOGY, 2022, 33 (10)
  • [32] Indoor PM10 and PM2.5 at Nurseries and Primary Schools
    Sousa, S. I., V
    Alvim-Ferraz, M. C. M.
    Martins, F. G.
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 385 - 390
  • [33] PM10 and PM2.5 aerosol fractions in Zagreb air
    Šega, K.
    Hršak, J.
    Ačkovi, M.
    Bešli, I.
    Journal of Aerosol Science, 2000, 31 (SUPPL. 1)
  • [34] Cyclones as PM10 and PM2.5 emission measurement classifiers
    Hemerka, J.
    Branis, M.
    Vybiral, P.
    AIR POLLUTION XVIII, 2010, 136 : 395 - 406
  • [35] Emission measurements of PM10 and PM2.5 at industrial plants
    Geueke, KJ
    GEFAHRSTOFFE REINHALTUNG DER LUFT, 2005, 65 (7-8): : 313 - 316
  • [36] PM10/PM2.5 Emissionsmessungen: Gerateentwicklung und Ergebnisse
    John, Astrid
    Kuhlbusch, Thomas
    Fissan, Heinz
    Geueke, Karl-Josef
    Broker, G.
    VDI Berichte, 2002, (1722): : 209 - 218
  • [37] Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India
    Sharma, M
    Maloo, S
    ATMOSPHERIC ENVIRONMENT, 2005, 39 (33) : 6015 - 6026
  • [38] Influence of traffic on the PM10 and PM2.5 urban aerosol fractions in Madrid (Spain)
    Artíñano, B
    Salvador, P
    Alonso, DG
    Querol, X
    Alastuey, A
    SCIENCE OF THE TOTAL ENVIRONMENT, 2004, 334 : 111 - 123
  • [39] Influence Factors on PM2.5 and PM10 Emissions in Iron Ore Sintering Process
    Ji, Zhiyun
    Fan, Xiaohui
    Gan, Min
    Chen, Xuling
    Li, Qiang
    Tian, Ye
    He, Xiangning
    Zhou, Yang
    Jiang, Tao
    ISIJ INTERNATIONAL, 2016, 56 (09) : 1580 - 1587
  • [40] INAA study for characterization of PM10 and PM2.5 in Beijing and influence of dust storm
    Y. Song
    D. D. Xu
    Z. F. Chai
    H. Ouyang
    W. Y. Feng
    X. Y. Mao
    Journal of Radioanalytical and Nuclear Chemistry, 2006, 270 : 29 - 33