Time-dependent physical Stokes parameters and degree of polarization of light

被引:2
|
作者
Turunen, Jari [1 ]
Wyrowski, Frank [2 ]
机构
[1] Univ Eastern Finland, Dept Phys & Math, POB 111, FI-80101 Joensuu, Finland
[2] Friedrich Schiller Univ, Inst Appl Phys, Albert Einstein Str 15, D-07745 Jena, Germany
关键词
SPECTRUM; PHASE;
D O I
10.1103/PhysRevA.99.023824
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We extend the concept of the Eberly-Wodkiewicz time-dependent physical spectrum of light to electromagnetic fields by considering the observable time dependence of four appropriately defined Stokes parameters. We also define the concept of time-dependent physical degree of polarization of light by means of these parameters, and discuss the measurement of these quantities using a tunable spectral filter and a detector with a finite response time. The concepts are illustrated by examples with spectrally phase-modulated fully and partially coherent model pulse trains.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] TIME-DEPENDENT STOKES-FLOW INDUCED BY INSTANTANEOUS SOURCES
    AJAYI, OO
    FALADE, A
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (03): : 718 - 724
  • [32] Indefinite overlapping Schwarz methods for time-dependent Stokes problems
    Pavarino, LF
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 187 (1-2) : 35 - 51
  • [33] PROJECTION METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS
    SHEN, J
    APPLIED MATHEMATICS LETTERS, 1992, 5 (01) : 35 - 37
  • [34] ROBUST PRECONDITIONING FOR XFEM APPLIED TO TIME-DEPENDENT STOKES PROBLEMS
    Gross, Sven
    Ludescher, Thomas
    Olshanskii, Maxim
    Reusken, Arnold
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (06): : A3492 - A3514
  • [35] An adaptive finite element method for a time-dependent Stokes problem
    Torres, Ricardo Prato
    Dominguez, Catalina
    Diaz, Stiven
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (01) : 325 - 348
  • [36] Optimal Convergence for Time-Dependent Stokes Equation: A New Approach
    D. Fishelov
    J.-P. Croisille
    Journal of Scientific Computing, 2021, 89
  • [37] PROBLEMS OF TIME-DEPENDENT NAVIER-STOKES FLOW.
    Wu, J.C.
    Rizk, Y.M.
    Sankar, N.L.
    Developments in Boundary Element Methods, 1984, : 137 - 169
  • [38] THE TIME-DEPENDENT DEFORMATION OF A CAPSULE IN AN ARBITRARY STOKES-FLOW
    BRUNN, PO
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (01): : 1 - 11
  • [39] A MIXED METHOD FOR THE TIME-DEPENDENT NAVIER-STOKES PROBLEM
    BERNARDI, C
    GODLEWSKI, E
    RAUGEL, G
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) : 165 - 189
  • [40] Optimization with the time-dependent Navier-Stokes equations as constraints
    Vizheh, Mitra
    Momeni-Masuleh, Sayed Hodjatollah
    Malek, Alaeddin
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2015, 3 (02): : 87 - 98