Parallel coordinates for visualizing multidimensional geometry

被引:0
|
作者
Inselberg, A
机构
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Visualization provides insight through images, and can be considered as a collection of application-specific mappings: problem domain -> visual range. For the visualization of multivariate problems a multidimensional system of parallel coordinates is reviewed which provides a one-to-one mapping between subsets of N-space and subsets of 2-space. The result is a systematic and rigorous way of doing and seeing analytic and synthetic N-dimensional geometry. Lines in N-space are represented by N-1 indexed points. In fact, all p-flats (planes of dimension p in N-space) are represented by indexed points where the number of indices depends on p and N. The representations are generalized to enable the visualization of polytopes and certain kinds of hypersurfaces as well as recognition sf convexity. Several algorithms for constructing and displaying intersections, proximity and points interior/exterior/or on a hypersurface have been obtained. The methodology has been applied to visual data mining, process control, medicine, finance, retailing, collision avoidance algorithms for air traffic control, optimization and others.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 50 条
  • [21] Comprehensible Visualization of Multidimensional Data: Sum of Ranking Differences-Based Parallel Coordinates
    Ipkovich, Adam
    Heberger, Karoly
    Abonyi, Janos
    MATHEMATICS, 2021, 9 (24)
  • [22] Visual Analysis of Multidimensional Big Data: A Scalable Lightweight Bundling Method for Parallel Coordinates
    Cui, Wenqiang
    Strazdins, Girts
    Wang, Hao
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 106 - 117
  • [23] Visualizing the perisaccadic shift of spatiotopic coordinates
    Wayne A. Hershberger
    J. Scott Jordan
    Donald R. Lucas
    Perception & Psychophysics, 1998, 60 : 82 - 88
  • [24] Visualizing the perisaccadic shift of spatiotopic coordinates
    Hershberger, WA
    Jordan, JS
    Lucas, DR
    PERCEPTION & PSYCHOPHYSICS, 1998, 60 (01): : 82 - 88
  • [25] Techniques for visualizing multidimensional data
    Hewitt, WT
    Larkin, S
    Grant, AJ
    1997 CERN SCHOOL OF COMPUTING, 1997, 97 (08): : 189 - 199
  • [26] GEOMETRY OF ROCHE COORDINATES
    KITAMURA, M
    ASTROPHYSICS AND SPACE SCIENCE, 1970, 7 (02) : 272 - &
  • [27] MULTIDIMENSIONAL SPHERICAL COORDINATES QUANTIZATION
    SWASZEK, PF
    THOMAS, JB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (04) : 570 - 576
  • [28] Cupid: Cluster-Based Exploration of Geometry Generators with Parallel Coordinates and Radial Trees
    Beham, Michael
    Herzner, Wolfgang
    Groeller, M. Eduard
    Kehrer, Johannes
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 1693 - 1702
  • [29] Conditional Parallel Coordinates
    Weidele, Daniel Karl I.
    2019 IEEE VISUALIZATION CONFERENCE (VIS), 2019, : 221 - 225
  • [30] Illustrative parallel coordinates
    McDonnell, K. T.
    Mueller, K.
    COMPUTER GRAPHICS FORUM, 2008, 27 (03) : 1031 - 1038