Optimum decomposition of the anisotropic diffusion term

被引:2
|
作者
Moukalled, F. [1 ]
Mangani, L. [2 ]
Darwish, M. [1 ]
机构
[1] Amer Univ Beirut, Dept Mech Engn, POB 11-0236, Beirut 11072020, Lebanon
[2] Hsch Luzern, Tech & Architektur, Horw, Switzerland
关键词
FINITE-VOLUME METHOD; HIGH-RESOLUTION SCHEMES; POLYGONAL MESHES; UNSTRUCTURED MESHES; NATURAL-CONVECTION; POLYHEDRAL MESHES; FLUID-FLOW; EQUATIONS; FORMULATION; DISCRETIZATION;
D O I
10.1080/10407790.2017.1377534
中图分类号
O414.1 [热力学];
学科分类号
摘要
A new decomposition method for the discretization of anisotropic diffusion term is developed. The method is a generalization of the optimum decomposition practice adopted in discretizing the isotropic diffusion flux. The new approach is applied in conjunction with the well-known semi-implicit and recently developed modified implicit nonlinear diffusion schemes and used for discretizing the anisotropic diffusion term. The resulting discretization methods are used for solving several anisotropic diffusion problems to compare the performance of the new decomposition technique with the standard one. Results generated demonstrate the virtues of the new method, which leads to a reduction in the CPU times needed for convergence by percentages reaching a level as high as 70%.
引用
收藏
页码:191 / 210
页数:20
相关论文
共 50 条
  • [41] DIFFUSION LIMITED AGGREGATION WITH DIRECTED AND ANISOTROPIC DIFFUSION
    JULLIEN, R
    KOLB, M
    BOTET, R
    JOURNAL DE PHYSIQUE, 1984, 45 (03): : 395 - 399
  • [42] DECOMPOSITION OF OPTIMUM SYNTHESIS FOR MULTICHANNEL SERVOMECHANISMS
    KUZNETSOV, BI
    ELECTRICAL TECHNOLOGY, 1989, (01): : 109 - 122
  • [43] Optimum Thickness of Circular Anisotropic Heat Spreaders
    F. Falakzadeh
    R. Mehryar
    Journal of Engineering Physics and Thermophysics, 2022, 95 : 662 - 672
  • [44] OPTIMUM THICKNESS OF CIRCULAR ANISOTROPIC HEAT SPREADERS
    Falakzadeh, F.
    Mehryar, R.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2022, 95 (03) : 662 - 672
  • [45] Robust anisotropic diffusion: Connections between robust statistics, line processing, and anisotropic diffusion
    Black, MJ
    Sapiro, G
    Marimont, D
    Heeger, D
    SCALE-SPACE THEORY IN COMPUTER VISION, 1997, 1252 : 323 - 326
  • [46] Anisotropic diffusion and shear instabilities
    Talon, S
    Zahn, JP
    ASTRONOMY & ASTROPHYSICS, 1997, 317 (03) : 749 - 751
  • [47] Edge detection by anisotropic diffusion
    Montesinos, P
    Chouk, S
    CISST'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, VOLS I AND II, 2000, : 605 - 609
  • [48] TRAPPING IN THE PRESENCE OF ANISOTROPIC DIFFUSION
    HUBER, DL
    PHYSICAL REVIEW B, 1982, 26 (07): : 3937 - 3938
  • [49] RENORMALIZATION OF A DIFFUSION ON AN ANISOTROPIC CHAIN
    NAPIORKOWSKI, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (13): : 3065 - 3070
  • [50] Diffusion in inhomogeneous and anisotropic media
    Christensen, M
    Pedersen, JB
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (10): : 5171 - 5175