Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs

被引:249
|
作者
Wang, Lei [1 ]
Tian, Ye [1 ]
Yu, Xiangyu [1 ]
Wang, Cong [1 ]
Yao, Bowen [1 ]
Wang, Shihao [1 ]
Winterfeld, Philip H. [1 ]
Wang, Xu [2 ]
Yang, Zhenzhou [2 ]
Wang, Yonghong [2 ]
Cui, Jingyuan [2 ]
Wu, Yu-Shu [1 ]
机构
[1] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA
[2] CNPC, Houston, TX USA
关键词
Enhanced oil recovery; Tight oil reservoir; Gas injection; Chemical flooding; Core flooding; Field pilot tests; ENHANCED GAS RECOVERY; CARBON-DIOXIDE; CO2; STORAGE; WETTABILITY ALTERATION; SANDSTONE CORES; PHASE-BEHAVIOR; INJECTION; PRESSURE; FLUID; NANOFLUIDS;
D O I
10.1016/j.fuel.2017.08.095
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents a comprehensive review of the technical progress as well as updated knowledge and understandings of IOR/EOR technologies for tight oil reservoirs. Critical and in-depth assessment of various IOR/EOR methods is made upon the best practice and lessons learned, mainly, in the North America. In the past few years, many traditional and new IOR/EOR methods have been tested in laboratory and piloted in field to investigate their potential in improving oil recovery from unconventional plays, including water injection, miscible and immiscible gas injection, water-alternating-gas injection, chemical flooding, and nanotechnology. Feasibility concerns and technical challenges, such as low injectivity, formation damage, and low sweep efficiency arising from extremely low permeability and high heterogeneity in fractured tight oil reservoirs, are raised for directly adopting traditional IOR/EOR methods. IOR/EOR mechanisms in tight oil reservoirs mainly involve gas and oil flows in nanometer pores, gas dissolution and diffusion through low permeability matrix, oil swelling, wettability alteration, IFT reduction, and fracture-matrix interaction, thus thorough understanding of flow and transport mechanisms in multi-scale pores and fractures is indispensable for developing effective IOR/ EOR technologies. To optimize the selection of specific gas species or chemical formulas, it is necessary to conduct preliminary assessment of practicability and viability with both experimental studies and numerical simulations for operation upscaling and production prediction before field implementation.
引用
收藏
页码:425 / 445
页数:21
相关论文
共 50 条
  • [21] Development of a Novel High-Temperature Microemulsion for Enhanced Oil Recovery in Tight Oil Reservoirs
    Xiao, Lixiao
    Hou, Jirui
    Wang, Weiju
    Raj, Infant
    MATERIALS, 2023, 16 (19)
  • [22] Improvement of oil recovery factor in tight reservoirs: A laboratory approach based on carbon dioxide enhanced oil recovery methods
    Zhang, Chuanbao
    Wu, Gang
    Huang, Hao
    Zhan, Hongyang
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [23] Experimental Study of Gas Drive Chemical Analysis and Enhanced Recovery in Tight Oil Reservoirs
    Li, Xianzheng
    Pan, Chunfu
    Chen, Hao
    Zhang, Zheng
    Wang, Shengzhou
    Ning, Kun
    CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, 2024, 60 (04) : 999 - 1010
  • [24] Spontaneous Imbibition and Core Flooding Experiments of Enhanced Oil Recovery in Tight Reservoirs with Surfactants
    Zhang, Shaojie
    Zhu, Feng
    Xu, Jin
    Liu, Peng
    Chen, Shangbin
    Wang, Yang
    ENERGIES, 2023, 16 (04)
  • [25] Implication of interfacial tension reduction and wettability alteration by surfactant on enhanced oil recovery in tight oil reservoirs
    Liu, Xuefen
    Kang, Yili
    Yan, Lingling
    Tian, Jian
    Li, Jianfeng
    You, Lijun
    ENERGY REPORTS, 2022, 8 : 13672 - 13681
  • [26] The application of CO2-responsive materials on enhanced oil recovery for fractured tight oil reservoirs
    Zhu, Zhuoyan
    Song, Yingzhi
    Gao, Qi
    Wang, Chao
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [27] Integrated study on CO2 enhanced oil recovery and geological storage in tight oil reservoirs
    Li, Lei
    Liu, Yunfan
    Su, Yuliang
    Niu, Hongwei
    Hou, Zihan
    Hao, Yongmao
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 241
  • [28] Recent Advances in Reservoir Stimulation and Enhanced Oil Recovery Technology in Unconventional Reservoirs
    Zhang, Lufeng
    Pan, Linhua
    Zou, Yushi
    Wang, Jie
    Li, Minghui
    Feng, Wei
    PROCESSES, 2024, 12 (01)
  • [29] Enhancement of the imbibition recovery by surfactants in tight oil reservoirs
    Meng, Zhan
    Yang, Sheng-Lai
    Cui, Yan
    Zhong, Zi-Yao
    Liang, Cheng-Gang
    Wang, Lu
    Qian, Kun
    Ma, Quan-Zheng
    Wang, Jun-Ru
    PETROLEUM SCIENCE, 2018, 15 (04) : 783 - 793
  • [30] Flow Units: From Conventional to Tight-Gas to Shale-Gas to Tight-Oil to Shale-Oil Reservoirs
    Aguilera, Roberto
    SPE RESERVOIR EVALUATION & ENGINEERING, 2014, 17 (02) : 190 - 208