Hybrid CNN-SVM Inference Accelerator on FPGA Using HLS

被引:5
|
作者
Liu, Bing [1 ]
Zhou, Yanzhen [1 ]
Feng, Lei [1 ]
Fu, Hongshuo [1 ]
Fu, Ping [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150000, Peoples R China
基金
中国国家自然科学基金;
关键词
convolution neural network (CNN); support vector machine (SVM); field-programmable gate array (FPGA); hybrid algorithm accelerator; computation mapping; design space exploration (DSE); high-level synthesis (HLS);
D O I
10.3390/electronics11142208
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolution neural networks (CNN), support vector machine (SVM) and hybrid CNN-SVM algorithms are widely applied in many fields, including image processing and fault diagnosis. Although many dedicated FPGA accelerators have been proposed for specific networks, such as CNN or SVM, few of them have focused on CNN-SVM. Furthermore, the existing accelerators do not support CNN-SVM, which limits their application scenarios. In this work, we propose a hybrid CNN-SVM accelerator on FPGA. This accelerator utilizes a novel hardware-reuse architecture and unique computation mapping strategy to implement different calculation modes in CNN-SVM so that it can realize resource-efficient acceleration of the hybrid algorithm. In addition, we propose a universal deployment methodology to automatically select accelerator design parameters according to the target platform and algorithm. The experimental results on ZYNQ-7020 show that our implementation can efficiently map CNN-SVM onto FPGA, and the performance is competitive with other state-of-the-art works.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Panchadeva: Sculpture Image Classification using CNN-SVM
    Rao, Akshath
    Sindhu, C.
    Suhail, Abrar
    Mehta, Aayush
    Dube, Saksham
    JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY, 2023, 30 (09): : E332 - E344
  • [12] Image Classification of Aerial Images Using CNN-SVM
    Copur, Mert
    Ozyildirim, Buse Melis
    Ibrikci, Turgay
    2018 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2018, : 89 - 94
  • [13] 面向FPGA部署的CNN-SVM算法研究与实现
    周彦臻
    吴瑞东
    于潇
    付平
    刘冰
    李君宝
    电子测量与仪器学报, 2021, 35 (04) : 90 - 98
  • [14] Real-Time Tomato Quality Assessment Using Hybrid CNN-SVM Model
    Mputu, Hassan Shabani
    Mawgood, Ahmed-Abdel
    Shimada, Atsushi
    Sayed, Mohammed S.
    IEEE EMBEDDED SYSTEMS LETTERS, 2024, 16 (04) : 453 - 456
  • [15] A Hybrid CNN-SVM Prediction Approach for Breast Cancer Ultrasound Imaging
    Guizani, Sara
    Guizani, Nadra
    Gharsallaoui, Soumaya
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1574 - 1578
  • [16] A hybrid CNN-SVM classifier for weed recognition in winter rape field
    Tao, Tao
    Wei, Xinhua
    PLANT METHODS, 2022, 18 (01)
  • [17] Hybrid CNN-SVM Classifier for Human Emotion Recognition Using ROI Extraction and Feature Fusion
    Vaidya, Kanchan S.
    Patil, Pradeep M.
    Alagirisamy, Mukil
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 132 (02) : 1099 - 1135
  • [18] Efficient Brain Tumor Classification with a Hybrid CNN-SVM Approach in MRI
    Suryawanshi, Shweta
    Patil, Sanjay B.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (03) : 340 - 354
  • [19] A Method for UWB Localization Based on CNN-SVM and Hybrid Locating Algorithm
    Gao, Zefu
    Jiao, Yiwen
    Yang, Wenge
    Li, Xuejian
    Wang, Yuxin
    INFORMATION, 2023, 14 (01)
  • [20] Classification of macular abnormalities using a lightweight CNN-SVM framework
    Wang, Xuqian
    Gu, Yu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (06)