Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions

被引:19
|
作者
Zhou, Jiajing [1 ,2 ,3 ]
Penna, Matthew [4 ]
Lin, Zhixing [1 ,2 ]
Han, Yiyuan [1 ,2 ]
Lafleur, Rene P. M. [1 ,2 ]
Qu, Yijiao [1 ,2 ]
Richardson, Joseph J. [1 ,2 ]
Yarovsky, Irene [4 ]
Jokerst, Jesse V. [3 ,5 ,6 ]
Caruso, Frank [1 ,2 ]
机构
[1] Univ Melbourne, ARC Ctr Excellence Convergent Bionano Sci & Techn, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
[3] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA
[4] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
[5] Univ Calif San Diego, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
[6] Univ Calif San Diego, Dept Radiol, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
澳大利亚研究理事会; 美国国家科学基金会; 英国医学研究理事会; 美国国家卫生研究院; 奥地利科学基金会;
关键词
functional self-assembly; nanostructures; polyphenols; supramolecular chemistry; surface engineering; SURFACE-CHEMISTRY; POLYDOPAMINE;
D O I
10.1002/anie.202106316
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacial modular assembly has emerged as an adaptable strategy for engineering the surface properties of substrates in biomedicine, photonics, and catalysis. Herein, we report a versatile and robust coating (pBDT-TA), self-assembled from tannic acid (TA) and a self-polymerizing aromatic dithiol (i.e., benzene-1,4-dithiol, BDT), that can be engineered on diverse substrates with a precisely tuned thickness (5-40 nm) by varying the concentration of BDT used. The pBDT-TA coating is stabilized by covalent (disulfide) bonds and supramolecular (pi-pi) interactions, endowing the coating with high stability in various harsh aqueous environments across ionic strength, pH, temperature (e.g., 100 mM NaCl, HCl (pH 1) or NaOH (pH 13), and water at 100 degrees C), as well as surfactant solution (e.g., 100 mM Triton X-100) and biological buffer (e.g., Dulbecco's phosphate-buffered saline), as validated by experiments and simulations. Moreover, the reported pBDT-TA coating enables secondary reactions on the coating for engineering hybrid adlayers (e.g., ZIF-8 shells) via phenolic-mediated adhesion, and the facile integration of aromatic fluorescent dyes (e.g., rhodamine B) via pi interactions without requiring elaborate synthetic processes.
引用
收藏
页码:20225 / 20230
页数:6
相关论文
共 50 条
  • [31] Typical 2-Cys peroxiredoxins - modulation by covalent transformations and noncovalent interactions
    Aran, Martin
    Ferrero, Diego S.
    Pagano, Eduardo
    Wolosiuk, Ricardo A.
    FEBS JOURNAL, 2009, 276 (09) : 2478 - 2493
  • [32] Binding Selectivity Between Diazobenzene and Different Nucleophilic Reagents: Covalent and Noncovalent Interactions
    Wang, Gaobo
    Ma, Jing
    Gaodeng Xuexiao Huaxue Xuebao/Chemical Journal of Chinese Universities, 2021, 42 (07): : 2238 - 2244
  • [33] Theoretical investigation on the nature of substituted benzeneMIDLINE HORIZONTAL ELLIPSISAuX interactions: covalent or noncovalent?
    Shan, Aiting
    Li, Xiaoyan
    Zeng, Yanli
    Meng, Lingpeng
    Zhang, Xueying
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (07) : 3315 - 3324
  • [34] Material Adhesion through Direct Covalent Bond Formation Assisted by Noncovalent Interactions
    Osaki, Motofumi
    Sekine, Tomoko
    Yamaguchi, Hiroyasu
    Takashima, Yoshinori
    Harada, Akira
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (04) : 2189 - 2196
  • [35] Binding Selectivity Between Diazobenzene and Different Nucleophilic Reagents : Covalent and Noncovalent Interactions
    Wang Gaobo
    Ma Jing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (07): : 2238 - 2244
  • [36] AN NMR-STUDY OF THE COVALENT AND NONCOVALENT INTERACTIONS OF CC-1065 AND DNA
    SCAHILL, TA
    JENSEN, RM
    SWENSON, DH
    HATZENBUHLER, NT
    PETZOLD, G
    WIERENGA, W
    BRAHME, ND
    BIOCHEMISTRY, 1990, 29 (11) : 2852 - 2860
  • [37] Noncovalent PEGylation via Lectin-Glycopolymer Interactions
    Antonik, Pawel M.
    Eissa, Ahmed M.
    Round, Adam R.
    Cameron, Neil R.
    Crowley, Peter B.
    BIOMACROMOLECULES, 2016, 17 (08) : 2719 - 2725
  • [38] Noncovalent functionalization of graphene via π-hole···π and σ-hole···π interactions
    Yong-Hui Zhang
    Yu-Liang Li
    Jianming Yang
    Pan-Pan Zhou
    Kefeng Xie
    Structural Chemistry, 2020, 31 : 97 - 101
  • [39] Noncovalent functionalization of graphene via π-hole•••π and σ-hole•••π interactions
    Zhang, Yong-Hui
    Li, Yu-Liang
    Yang, Jianming
    Zhou, Pan-Pan
    Xie, Kefeng
    STRUCTURAL CHEMISTRY, 2020, 31 (01) : 97 - 101
  • [40] NCIPLOT4: Fast, Robust, and Quantitative Analysis of Noncovalent Interactions
    Boto, Roberto A.
    Peccati, Francesca
    Laplaza, Ruben
    Quan, Chaoyu
    Carbone, Alessandra
    Piquemal, Jean-Philip
    Maday, Yvon
    Contreras-Garcia, Julia
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (07) : 4150 - 4158