Enhanced laser-driven proton acceleration using nanowire targets

被引:18
|
作者
Vallieres, S. [1 ,2 ]
Salvadori, M. [1 ,3 ,4 ]
Permogorov, A. [5 ]
Cantono, G. [5 ]
Svendsen, K. [5 ]
Chen, Z. [1 ]
Sun, S. [1 ]
Consoli, F. [3 ]
d'Humieres, E. [2 ]
Wahlstrom, C-G [5 ]
Antici, P. [1 ]
机构
[1] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1P7, Canada
[2] Univ Bordeaux, CELIA, 351 Cours Liberat, F-33400 Talence, France
[3] Natl Agcy New Technol Energy & Sustainable Econ D, Via Enrico Fermi 45, I-00044 Rome, Italy
[4] Univ Roma La Sapienza, P Aldo Moro 5, I-00185 Rome, Italy
[5] Lund Univ, Dept Phys, S-22100 Lund, Sweden
基金
加拿大自然科学与工程研究理事会; 欧盟地平线“2020”; 加拿大创新基金会; 瑞典研究理事会;
关键词
INTENSE; RADIATION; DIAMOND; PLASMAS;
D O I
10.1038/s41598-020-80392-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Laser-driven proton acceleration is a growing field of interest in the high-power laser community. One of the big challenges related to the most routinely used laser-driven ion acceleration mechanism, Target-Normal Sheath Acceleration (TNSA), is to enhance the laser-to-proton energy transfer such as to maximize the proton kinetic energy and number. A way to achieve this is using nanostructured target surfaces in the laser-matter interaction. In this paper, we show that nanowire structures can increase the maximum proton energy by a factor of two, triple the proton temperature and boost the proton numbers, in a campaign performed on the ultra-high contrast 10 TW laser at the Lund Laser Center (LLC). The optimal nanowire length, generating maximum proton energies around 6 MeV, is around 1-2 mu m. This nanowire length is sufficient to form well-defined highly-absorptive NW forests and short enough to minimize the energy loss of hot electrons going through the target bulk. Results are further supported by Particle-In-Cell simulations. Systematically analyzing nanowire length, diameter and gap size, we examine the underlying physical mechanisms that are provoking the enhancement of the longitudinal accelerating electric field. The parameter scan analysis shows that optimizing the spatial gap between the nanowires leads to larger enhancement than by the nanowire diameter and length, through increased electron heating.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Microfabrication of Silicon Hydrogenated Thin Targets for Multi-MeV Laser-Driven Proton Acceleration
    Picciotto, Antonino
    Margarone, Daniele
    Crivellari, Michele
    Bellutti, Pierluigi
    Colpo, Sabrina
    Torrisi, Lorenzo
    Krasa, Josef
    Velhyan, Andriy
    Ullschmied, Jiri
    APPLIED PHYSICS EXPRESS, 2011, 4 (12)
  • [22] A setup for studies of laser-driven proton acceleration at the Lund Laser Centre
    Aurand, B.
    Hansson, M.
    Senje, L.
    Svensson, K.
    Persson, A.
    Neely, D.
    Lundh, O.
    Wahlstrom, C. -G.
    LASER AND PARTICLE BEAMS, 2015, 33 (01) : 59 - 64
  • [23] Carbon nanotubes as outstanding targets for laser-driven particle acceleration
    Ma, Wenjun
    NANO RESEARCH, 2023, 16 (11) : 12572 - 12578
  • [24] Carbon nanotubes as outstanding targets for laser-driven particle acceleration
    Wenjun Ma
    Nano Research, 2023, 16 : 12572 - 12578
  • [25] Laser-driven proton acceleration from ultrathin foils with nanoholes
    Giada Cantono
    Alexander Permogorov
    Julien Ferri
    Evgeniya Smetanina
    Alexandre Dmitriev
    Anders Persson
    Tünde Fülöp
    Claes-Göran Wahlström
    Scientific Reports, 11
  • [26] Characterization of laser-driven proton acceleration from water microdroplets
    Becker, Georg A.
    Schwab, Matthew B.
    Loetzsch, Robert
    Tietze, Stefan
    Kloepfel, Diethard
    Rehwald, Martin
    Schlenvoigt, Hans-Peter
    Saevert, Alexander
    Schramm, Ulrich
    Zepf, Matt
    Kaluza, Malte C.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [27] Laser-driven proton acceleration: source optimization and radiographic applications
    Borghesi, M.
    Bigongiari, A.
    Kar, S.
    Macchi, A.
    Romagnani, L.
    Audebert, P.
    Fuchs, J.
    Toncian, T.
    Willi, O.
    Bulanov, S. V.
    Mackinnon, A. J.
    Gauthier, J. C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
  • [28] Characterization of laser-driven proton acceleration from water microdroplets
    Georg A. Becker
    Matthew B. Schwab
    Robert Lötzsch
    Stefan Tietze
    Diethard Klöpfel
    Martin Rehwald
    Hans-Peter Schlenvoigt
    Alexander Sävert
    Ulrich Schramm
    Matt Zepf
    Malte C. Kaluza
    Scientific Reports, 9
  • [29] Laser-driven proton acceleration from ultrathin foils with nanoholes
    Cantono, Giada
    Permogorov, Alexander
    Ferri, Julien
    Smetanina, Evgeniya
    Dmitriev, Alexandre
    Persson, Anders
    Fulop, Tuende
    Wahlstrom, Claes-Goeran
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets
    Dollar, F.
    Reed, S. A.
    Matsuoka, T.
    Bulanov, S. S.
    Chvykov, V.
    Kalintchenko, G.
    McGuffey, C.
    Rousseau, P.
    Thomas, A. G. R.
    Willingale, L.
    Yanovsky, V.
    Litzenberg, D. W.
    Krushelnick, K.
    Maksimchuk, A.
    APPLIED PHYSICS LETTERS, 2013, 103 (14)