Fusion methodologies for biomedical data

被引:10
|
作者
Tsiliki, Georgia [1 ]
Kossida, Sophia [1 ]
机构
[1] Acad Athens, Biomed Res Fdn, Bioinformat & Med Informat Grp, Athens 11527, Greece
关键词
Data integration; Genome-wide data; Transcriptome; Proteome; Bayesian networks; Kernel models; PROTEIN-PROTEIN INTERACTIONS; DATA INTEGRATION METHODOLOGY; GENE-EXPRESSION; FUNCTION PREDICTION; CELLULAR NETWORKS; SYSTEMS BIOLOGY; PROTEOMIC DATA; OMICS DATA; GENOME; TOOL;
D O I
10.1016/j.jprot.2011.07.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Data fusion methods are powerful tools for integrating the different views of an organism provided by various types of experimental data. We describe various methodologies for integrating and drawing inferences from a collection of biomedical data, primarily focusing on protein and gene expression data. Computational experiments performed using biomedical data, including known protein-protein interactions, hydropathy profiles, gene expression data and amino acid sequences, demonstrate the utility of this approach. Overall, studies agree in that methodologies using carefully selected data of various types to predict particular classes, groups and interactions, perform better than when applied to a single type of data. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2774 / 2785
页数:12
相关论文
共 50 条
  • [1] Data handling in data fusion: Methodologies and applications
    Azcarate, Silvana M.
    Rios-Reina, Rocio
    Amigo, Jose M.
    Goicoechea, Ector C.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 143
  • [2] Signal analysis and data fusion methodologies
    Shenton-Taylor, C.
    Hurst, G.
    Duroe, K.
    Arthur, P. R.
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 18 - 21
  • [3] A Review on Data Fusion of Multidimensional Medical and Biomedical Data
    Azam, Kazi Sultana Farhana
    Ryabchykov, Oleg
    Bocklitz, Thomas
    MOLECULES, 2022, 27 (21):
  • [4] Bibliometric Data Fusion for Biomedical Information Retrieval
    Breuer, Timo
    Kreutz, Christin Katharina
    Schaer, Philipp
    Tunger, Dirk
    2023 ACM/IEEE JOINT CONFERENCE ON DIGITAL LIBRARIES, JCDL, 2023, : 107 - 118
  • [5] Special topic section on biomedical data fusion
    Dawant, BM
    Garbay, C
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1999, 46 (10) : 1169 - 1170
  • [6] Three dimensional data fusion for biomedical surface reconstruction
    Zachary, JM
    Iyengar, SS
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS, 1997, 3067 : 74 - 82
  • [7] Multimodal deep learning for biomedical data fusion: a review
    Stahlschmidt, Soren Richard
    Ulfenborg, Benjamin
    Synnergren, Jane
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [8] Genetic fuzzy fusion of SVM classifiers for biomedical data
    Chen, XJ
    Harrison, R
    Zhang, YQ
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 654 - 659
  • [9] Data fusion methodologies to support theater level and deployable surveillance systems
    Hatch, MD
    Kaina, JL
    Mahler, RP
    Myre, RS
    CONFERENCE RECORD OF THE THIRTY-SECOND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1998, : 563 - 567
  • [10] Data fusion methodologies in the deployable autonomous distributed systems (DADS) project
    Hatch, MD
    Kaina, JL
    Owen, M
    Mahler, RP
    Myre, RS
    Benkoski, SJ
    FUSION'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTISOURCE-MULTISENSOR INFORMATION FUSION, VOLS 1 AND 2, 1998, : 470 - 477