UNUSUAL TEMPERATURE DEPENDENCE OF COERCIVITY IN ε-Fe2O3 PHASE

被引:0
|
作者
Nikolic, N. Violeta [1 ]
Tadic, Marin [1 ]
Mrakovic, Ana [1 ]
Spasojevic, Vojislav [1 ]
机构
[1] Univ Belgrade, Vinca Inst Nucl Sci, Condensed Matter Phys Lab, Belgrade, Serbia
关键词
epsilon-Fe2O3; phase; coercivity; phase transformations; OXIDE; CRYSTAL; FIELD; NANOPARTICLES;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nano iron oxides have been intensively investigated due to their various potential biomedical applications. epsilon-Fe2O3 phase exerted internal coercivity value up to similar to 20 kOe, high Curie temperature (T-c= 510 K), and magnetoelectric character. Accordingly, epsilon phase is recognized as a suitable material for medical spintronic biosensors production, that present important part for the lab-on-a-chip systems. Noteworthy, epsilon-Fe2O3 phase exerts peculiar magnetic behavior. To get better insight into the magnetism of this material, epsilon-Fe2O3/SiO2 sample was prepared by the combination of the sol-gel synthesis and microemulsion method (T-ann=1050 degrees C, t(ann)=4h). Afterwards, the sample was exposed to post-annealing treatment at 100 degrees C and 200 degrees C. Synthesized material was preliminary examined by XRD and SQUID techniques. Coercivity changes, induced by the post-annealing temperature oscillations, were monitored by hysteretic measurements. Sample annealed at 1050 degrees C for 4h, showed coercivity similar to 20 kOe. The same sample performed to the post-annealing treatment at 100 degrees C, exerted significantly decreased coercivity (similar to 1600 Oe). Further rise of the post-annealing temperature (200 degrees C) resulted in the increased coercivity similar to 15 kOe. Obtained study showed that there is insufficient knowledge concerning the epsilon-Fe2O3 coercivity changes of the polymorph. The more detailed investigation will be conducted, in order to advance the control of the epsilon phase magnetic properties.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 50 条
  • [21] Self-assembly of α-Fe2O3 mesocrystals with high coercivity
    Yao, Ruimin
    Cao, Chuanbao
    RSC ADVANCES, 2012, 2 (05) : 1979 - 1985
  • [22] Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3
    El Mendili, Yassine
    Bardeau, Jean-Francois
    Randrianantoandro, Nirina
    Greneche, Jean-Marc
    Grasset, Fabien
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2016, 17 (01) : 597 - 609
  • [23] Surface-induced reversal of a phase transformation for the synthesis of ε-Fe2O3 nanoparticles with high coercivity
    Tadic, Marin
    Milosevic, Irena
    Kralj, Slavko
    Hanzel, Darko
    Barudzija, Tanja
    Motte, Laurence
    Makovec, Darko
    ACTA MATERIALIA, 2020, 188 : 16 - 22
  • [24] The Orientation Dependence of the Photochemical Activity of α-Fe2O3
    Zhu, Yisi
    Schultz, Andrew M.
    Rohrer, Gregory S.
    Salvador, Paul A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (07) : 2428 - 2435
  • [25] Adsorption of As by γ-Fe2O3 and the Effect of Temperature
    Minami, Shoko
    Miyoshi, Takayuki
    Murayama, Norihiro
    Shibata, Junji
    KAGAKU KOGAKU RONBUNSHU, 2012, 38 (05) : 318 - 323
  • [26] Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite
    Tadic, Marin
    Spasojevic, Vojislav
    Kusigerski, Vladan
    Markovic, Dragana
    Remskar, Maja
    SCRIPTA MATERIALIA, 2008, 58 (08) : 703 - 706
  • [27] Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3 → α-Fe2O3
    Yakushkin, S. S.
    Balaev, D. A.
    Dubrovskiy, A. A.
    Semenov, S. V.
    Shaikhutdinov, K. A.
    Kazakova, M. A.
    Bukhtiyarova, G. A.
    Martyanov, O. N.
    Bayukov, O. A.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (04) : 1209 - 1217
  • [28] Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3 → α-Fe2O3
    S. S. Yakushkin
    D. A. Balaev
    A. A. Dubrovskiy
    S. V. Semenov
    K. A. Shaikhutdinov
    M. A. Kazakova
    G. A. Bukhtiyarova
    O. N. Martyanov
    O. A. Bayukov
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 1209 - 1217
  • [29] The temperature dependence of saturation magnetization of γ-Fe2O3/SiO2 magnetic nanocomposite
    Caizer, C
    Hrianca, I
    ANNALEN DER PHYSIK, 2003, 12 (1-2) : 115 - 122
  • [30] Activation entropy and anomalous temperature dependence of viscosity in aqueous suspensions of Fe2O3
    Chandler, H. D.
    POWDER TECHNOLOGY, 2017, 305 : 572 - 577