On the Wiener Polarity Index

被引:0
|
作者
Liu, Muhuo [1 ,2 ]
Liu, Bolian [2 ]
机构
[1] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
TREES;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Wiener polarity index W-P(G) of a graph G is the number of unordered pairs of vertices {u, v} of G such that the distance of u and v is equal to 3. In this paper, we obtain the relation between Wiener polarity index and Zegreb indices, and the relation between Wiener polarity index and Wiener index (resp. hyper-Wiener index). Moreover, we determine the second smallest Wiener polarity index together with the corresponding graphs among all trees on n vertices, we also identify the smallest and the second smallest Wiener polarity indices together with the corresponding graphs, respectively, among all unicyclic graphs on n vertices.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条
  • [21] Further Results on Wiener Polarity Index of Graphs
    Behmaram, A.
    Yousefi-Azari, H.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2011, 2 (01): : 67 - 70
  • [22] The maximum Wiener polarity index of unicyclic graphs
    Hou, Huoquan
    Liu, Bolian
    Huang, Yufei
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (20) : 10149 - 10157
  • [23] An algorithm on the Wiener polarity index of bipartite graphs
    1600, Charles Babbage Research Centre (91):
  • [24] Ordering chemical trees by Wiener polarity index
    Ashrafi, Ali Reza
    Ghalavand, Ali
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 313 : 301 - 312
  • [25] The Wiener Polarity Index of Benzenoid Systems and Nanotubes
    Tratnik, Niko
    CROATICA CHEMICA ACTA, 2018, 91 (03) : 309 - 315
  • [26] Ordering chemical unicyclic graphs by Wiener polarity index
    Ghalavand, Ali
    Ashrafi, Ali R.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (17)
  • [27] A note on chemical trees with minimum Wiener polarity index
    Ali, Akbar
    Du, Zhibin
    Ali, Muhammad
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 231 - 236
  • [28] Third Smallest Wiener Polarity Index of Unicyclic Graphs
    Fang, Wei
    Ma, Muhan
    Chen, FuYuan
    Dong, Hufeng
    FRONTIERS IN PHYSICS, 2020, 8
  • [29] The inverse Wiener polarity index problem for chemical trees
    Du, Zhibin
    Ali, Akbar
    PLOS ONE, 2018, 13 (05):
  • [30] On the extremal Wiener polarity index of trees with a given diameter
    Deng, Hanyuan
    Xiao, Hui
    Tang, Fenfang
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 63 (01) : 257 - 264