Defect correction method for time-dependent viscoelastic fluid flow

被引:14
|
作者
Zhang, Yunzhang [1 ]
Hou, Yanren [1 ]
Mu, Baoying [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
viscoelastic fluid flow; finite element; time dependent; defect correction method; discontinuous Galerkin; error estimate; Weissenberg number; NAVIER-STOKES EQUATIONS; SCHEME; FEM;
D O I
10.1080/00207160.2010.521549
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A defect correction method for solving the time-dependent viscoelastic fluid flow, aiming at high Weissenberg numbers, is presented. In the defect step, the constitutive equation is computed with the artificially reduced Weissenberg parameter for stability, and the residual is considered in the correction step. We show the convergence of the method and derive an error estimate. Numerical experiments support the theoretical results and demonstrate the effectiveness of the method.
引用
收藏
页码:1546 / 1563
页数:18
相关论文
共 50 条
  • [21] Time-dependent finite element simulations of a shear-thinning viscoelastic fluid with application to blood flow
    Donev, I. G.
    Reddy, B. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2014, 75 (09) : 668 - 686
  • [22] Time-dependent semidiscrete analysis of the viscoelastic fluid flow problem using a variational multiscale stabilized formulation
    Barrenechea, Gabriel R.
    Castillo, Ernesto
    Codina, Ramon
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (02) : 792 - 819
  • [23] Study of a finite element method for the time-dependent generalized Stokes system associated with viscoelastic flow
    Carneiro de Araujo, J. H.
    Gomes, P. D.
    Ruas, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (08) : 2562 - 2577
  • [24] A defect correction weak Galerkin finite element method for the Kelvin-Voigt viscoelastic fluid flow model
    Duan, Mengmeng
    Yang, Yan
    Feng, Minfu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [25] A two-parameter defect-correction method for computation of steady-state viscoelastic fluid flow
    Ervin, Vincent J.
    Howell, Jason S.
    Lee, Hyesuk
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (02) : 818 - 834
  • [26] Time-dependent analysis of electroosmotic fluid flow in a microchannel
    V. K. Narla
    Dharmendra Tripathi
    G. P. Raja Sekhar
    Journal of Engineering Mathematics, 2019, 114 : 177 - 196
  • [27] Flow of heat conducting fluid in a time-dependent domain
    Ondřej Kreml
    Václav Mácha
    Šárka Nečasová
    Aneta Wróblewska-Kamińska
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [28] Three control methods for time-dependent fluid flow
    Hinze, M
    Kunisch, K
    FLOW TURBULENCE AND COMBUSTION, 2000, 65 (3-4) : 273 - 298
  • [29] Flow of heat conducting fluid in a time-dependent domain
    Kreml, Ondrej
    Macha, Vaclav
    Necasova, Sarka
    Wroblewska-Kaminska, Aneta
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [30] REACTION OF THE FLUID FLOW ON TIME-DEPENDENT BOUNDARY PERTURBATION
    Marusic-Paloka, Eduard
    Pazanin, Igor
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (03) : 1227 - 1246