On Biased Stochastic Gradient Estimation

被引:0
|
作者
Driggs, Derek [1 ]
Liang, Jingwei [2 ,3 ]
Schonlieb, Carola-Bibiane [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
stochastic gradient descent; variance reduction; biased gradient estimation; OPTIMIZATION; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a uniform analysis of biased stochastic gradient methods for minimizing convex, strongly convex, and non-convex composite objectives, and identify settings where bias is useful in stochastic gradient estimation. The framework we present allows us to extend proximal support to biased algorithms, including SAG and SARAH, for the first time in the convex setting. We also use our framework to develop a new algorithm, Stochastic Average Recursive GradiEnt (SARGE), that achieves the oracle complexity lower-bound for nonconvex, finite-sum objectives and requires strictly fewer calls to a stochastic gradient oracle per iteration than SVRG and SARAH. We support our theoretical results with numerical experiments that demonstrate the benefits of certain biased gradient estimators.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] Online distribution system state estimation via stochastic gradient algorithm*
    Huang, Jianqiao
    Zhou, Xinyang
    Cui, Bai
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 213
  • [42] Nonasymptotic Estimation of Risk Measures Using Stochastic Gradient Langevin Dynamics
    Chu, Jiarui
    Tangpi, Ludovic
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2024, 15 (02): : 503 - 536
  • [43] On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent
    Laumont, Remi
    De Bortoli, Valentin
    Almansa, Andres
    Delon, Julie
    Durmus, Alain
    Pereyra, Marcelo
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2023, 65 (1) : 140 - 163
  • [44] A Lorentzian Stochastic Estimation for Video Super Resolution with Lorentzian Gradient Constraint
    He, Hailong
    He, Kai
    Zou, Gang
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2012, 58 (04) : 1294 - 1300
  • [45] DISTRIBUTIONALLY CONSTRAINED STOCHASTIC GRADIENT ESTIMATION USING NOISY FUNCTION EVALUATIONS
    Lam, Henry
    Zhang, Junhui
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 445 - 456
  • [46] Estimation of reaction kinetic parameters based on modified stochastic gradient descent
    Tang L.-S.
    Chen W.-F.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2022, 36 (03): : 426 - 436
  • [47] On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent
    Rémi Laumont
    Valentin De Bortoli
    Andrés Almansa
    Julie Delon
    Alain Durmus
    Marcelo Pereyra
    Journal of Mathematical Imaging and Vision, 2023, 65 : 140 - 163
  • [48] Adaptive Biased Stochastic Optimization
    Yang, Zhuang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2025, 47 (04) : 3067 - 3078
  • [49] Accelerating Stochastic Variance Reduced Gradient Using Mini-Batch Samples on Estimation of Average Gradient
    Huang, Junchu
    Zhou, Zhiheng
    Xu, Bingyuan
    Huang, Yu
    ADVANCES IN NEURAL NETWORKS, PT I, 2017, 10261 : 346 - 353
  • [50] Rethinking biased estimation
    Kay, Steven
    Eldar, Yonina C.
    IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (03) : 133 - 136