Graphene and the universality of the quantum Hall effect

被引:0
|
作者
Tzalenchuk, A. [1 ]
Janssen, T. J. B. M. [1 ]
Kazakova, O. [1 ]
Williams, J. M. [1 ]
Kubatkin, S. [2 ,3 ]
Lara-Avila, S. [2 ,3 ]
Moth-Poulsen, K. [2 ,3 ]
Yakimova, R. [4 ]
Bjornholm, T. [5 ]
Fletcher, N. E. [6 ]
Goebel, R. [6 ]
Kopylov, S. [7 ]
Fal'ko, V. [7 ]
机构
[1] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[2] Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[3] Chalmers, Dept Chem, S-41296 Gothenburg, Sweden
[4] Linkoping Univ, Dept Phys Schem & Biol, S-58183 Linkoping, Sweden
[5] Univ Copenhagen, Nano Sci Ctr, Dept Chem, DK-2100 Copenhagen, Denmark
[6] Bur Int Poids & Mesures, F-92312 Sevres, France
[7] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
来源
关键词
RESISTANCE STANDARD; GALLIUM-ARSENIDE; FREQUENCY; DYNAMICS; SILICON; SPEED; FILMS; LIGHT;
D O I
10.3254/978-1-61499-326-1-323
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect-comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK = h/e(2) = 25 812.807 443 4 (84) Omega (Mohr P. J. et al., Rev. Mod. Phys., 84 (2012) 1527), the resistance quantum. Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology, a few parts per billion, has been achieved only in silicon and III-V heterostructure devices. In this lecture we show that graphene - a single layer of carbon atoms - beats these well-established semiconductor materials as the system of choice for the realisation of the quantum resistance standard. Here we shall briefly describe graphene technology, discuss the structure and electronic properties of graphene, including the unconventional quantum Hall effect and then present in detail the route, which led to the most precise quantum Hall resistance universality test ever performed.
引用
收藏
页码:323 / 350
页数:28
相关论文
共 50 条
  • [11] SCALING AND UNIVERSALITY IN THE INTEGER QUANTUM HALL-EFFECT
    HUCKESTEIN, B
    EUROPHYSICS LETTERS, 1992, 20 (05): : 451 - 456
  • [12] UNIVERSALITY IN QUANTUM HALL SYSTEMS
    FROHLICH, J
    KERLER, T
    NUCLEAR PHYSICS B, 1991, 354 (2-3) : 369 - 417
  • [13] Quantum thermal Hall effect in graphene
    Long, Wen
    Zhang, Hui
    Sun, Qing-feng
    PHYSICAL REVIEW B, 2011, 84 (07)
  • [14] Quantum Hall Effect in Hydrogenated Graphene
    Guillemette, J.
    Sabri, S. S.
    Wu, Binxin
    Bennaceur, K.
    Gaskell, P. E.
    Savard, M.
    Levesque, P. L.
    Mahvash, F.
    Guermoune, A.
    Siaj, M.
    Martel, R.
    Szkopek, T.
    Gervais, G.
    PHYSICAL REVIEW LETTERS, 2013, 110 (17)
  • [15] Fractional quantum Hall effect in graphene
    Sahoo, S.
    Das, S.
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2009, 47 (09) : 658 - 662
  • [16] Quantum spin Hall effect in graphene
    Kane, CL
    Mele, EJ
    PHYSICAL REVIEW LETTERS, 2005, 95 (22)
  • [17] Graphene and the quantum spin Hall effect
    Kane, C. L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (8-9): : 1155 - 1164
  • [18] Integer quantum Hall effect in graphene
    Jellal, Ahmed
    PHYSICS LETTERS A, 2016, 380 (17) : 1514 - 1516
  • [19] Fractional quantum Hall effect in graphene
    Toke, Csaba
    Lammert, Paul E.
    Crespi, Vincent H.
    Jain, endra K. Jain
    PHYSICAL REVIEW B, 2006, 74 (23):
  • [20] Testing universality of the quantum Hall effect by means of the Wheatstone bridge
    Schopfer, F.
    Poirier, W.
    Journal of Applied Physics, 2007, 102 (05):