The Gorenstein-projective modules over a monomial algebra

被引:25
|
作者
Chen, Xiao-Wu [1 ]
Shen, Dawei [2 ,3 ]
Zhou, Guodong [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
[3] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
monomial algebra; Gorenstein-projective module; perfect path; quadratic monomial algebra; Nakayama algebra; RADICAL SQUARE ZERO; GENTLE ALGEBRAS; CATEGORIES; DIMENSION;
D O I
10.1017/S0308210518000185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a perfect path for a monomial algebra. We classify indecomposable non-projective Gorenstein-projective modules over the given monomial algebra via perfect paths. We apply the classification to a quadratic monomial algebra and describe explicitly the stable category of its Gorenstein-projective modules.
引用
收藏
页码:1115 / 1134
页数:20
相关论文
共 50 条
  • [31] Exact Morphism Category and Gorenstein-projective Representations
    Luo, Xiu-Hua
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (04): : 824 - 834
  • [32] Gorenstein projective modules over Milnor squares of rings
    Guo, Qianqian
    AIMS MATHEMATICS, 2024, 9 (10): : 28526 - 28541
  • [33] Gorenstein Projective Modules over Triangular Matrix Rings
    Eshraghi, H.
    Hafezi, R.
    Salarian, Sh.
    Li, Z. W.
    ALGEBRA COLLOQUIUM, 2016, 23 (01) : 97 - 104
  • [34] Gorenstein projective modules over rings of Morita contexts
    Qianqian Guo
    Changchang Xi
    Science China(Mathematics), 2024, 67 (11) : 2453 - 2484
  • [35] Gorenstein projective modules over rings of Morita contexts
    Guo, Qianqian
    Xi, Changchang
    SCIENCE CHINA-MATHEMATICS, 2023, 67 (11) : 2453 - 2484
  • [36] Gorenstein Projective Dimensions of Modules over Minimal Auslander-Gorenstein Algebras
    Li, Shen
    Marczinzik, Rene
    Zhang, Shunhua
    ALGEBRA COLLOQUIUM, 2021, 28 (02) : 337 - 350
  • [37] -Gorenstein projective, -Gorenstein injective and -Gorenstein flat modules
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 115 - 124
  • [38] RESOLUTIONS BY GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES AND MODULES OF FINITE INJECTIVE DIMENSION OVER GORENSTEIN RINGS
    ENOCHS, EE
    JENDA, OMG
    COMMUNICATIONS IN ALGEBRA, 1995, 23 (03) : 869 - 877
  • [39] A note on Gorenstein projective and Gorenstein flat modules
    Wang, Xinxin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (14)
  • [40] Gorenstein projective and weak Gorenstein flat modules
    Dong, Jun
    Wei, Jie
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (03) : 983 - 993