Influence of polypropylene and steel fibers on the mechanical properties of ultra-high-performance fiber-reinforced geopolymer concrete

被引:106
|
作者
Aisheh, Yazan Issa Abu [1 ]
Atrushi, Dawood Sulaiman [2 ]
Akeed, Mahmoud H. [3 ]
Qaidi, Shaker [2 ]
Tayeh, Bassam A. [4 ]
机构
[1] Middle East Univ, Civil Engn Dept, Amman 11831, Jordan
[2] Univ Duhok, Coll Engn, Dept Civil Engn, Duhok, Iraq
[3] Univ Technol Sydney UTS, Sch Civil & Environm Engn, Sydney, Australia
[4] Islamic Univ Gaza, Fac Engn, Civil Engn Dept, Gaza Strip, Palestine
关键词
Ultra high-performance concrete; Steel fiber; Polypropylene fiber; Microsilica; FLY-ASH; DURABILITY PROPERTIES; STRENGTH; POWDER; PARAMETERS; BEHAVIOR; SILICA;
D O I
10.1016/j.cscm.2022.e01234
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high-performance geopolymer concrete (UHPGPC) was investigated in this paper using microsilica and granulated blast furnace slag (GBFS) comprising polypropylene fiber (PF) and steel fiber (SF). The first group of mixing ratios was used to develop a control mixture with maximum compressive strength for this purpose. In the second group, nine mixtures were used to evaluate the effect of the fibers on the compressive strength, split strength, flexural strength, and modulus of elasticity of UHPGPC. Furthermore, the SEM analyses were performed to understand the mechanism of strength improvement based on the reaction products and micromorphology. The results indicate that the presence of PF in samples containing SF enhances its mechanical properties. Moreover, the results indicate that replacing PF with SF reduces mechanical strength while increasing durability.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Effects of geometry and hybrid ratio of steel and polyethylene fibers on the mechanical performance of ultra-high-performance fiber-reinforced cementitious composites
    Kim, Min-Jae
    Yoo, Doo-Yeol
    Yoon, Young-Soo
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (02): : 1835 - 1848
  • [42] Mechanical properties of hybrid fiber reinforced concrete with steel and polypropylene fibers
    Kotoky, Needhi
    Dutta, Anjan
    Deb, Sajal K.
    Indian Concrete Journal, 2020, 94 (12): : 29 - 37
  • [43] Study of the mechanical properties, durability, and microstructure of an ultra-high-performance fiber-reinforced concrete containing recycled fillers
    Lekoui, Mohamed Tahar
    Kechkar, Chiraz
    Hebhoub, Houria
    Messaoudi, Karima
    Alsayadi, Hamid
    Benhalilou, Mohamed Ichem
    MATERIALS SCIENCE-POLAND, 2024, 42 (03): : 178 - 193
  • [44] Mechanical behaviors and their correlations of ultra-high-performance fiber-reinforced concretes with various steel fiber types
    Nguyen, Duy-Liem
    Thai, Duc-Kien
    Nguyen, H. T. Tai
    Tran, Ngoc Thanh
    Phan, Tan-Duy
    Kim, Dong Joo
    STRUCTURAL CONCRETE, 2023, 24 (01) : 1179 - 1200
  • [45] Mechanical properties and corrosion resistance of high performance fiber-reinforced concrete with steel or amorphous alloy fibers
    Li, Y.
    Deng, Y. G.
    MATERIALS RESEARCH EXPRESS, 2021, 8 (09)
  • [46] Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 149 : 416 - 431
  • [47] Strengthening of Reinforced Concrete Columns with Combined Ultra-High-Performance Fiber-Reinforced Concrete and Glass Fiber-Reinforced Polymer Jacketing
    Dadvar, Sayyed Ali
    Mostofinejad, Davood
    Bahmani, Hadi
    ACI STRUCTURAL JOURNAL, 2021, 118 (05) : 285 - 297
  • [48] Influence of nanomaterials on properties and durability of ultra-high-performance geopolymer concrete
    Zeyad, Abdullah M.
    Bayagoob, Khaled H.
    Amin, Mohamed
    Mostafa, Sahar A.
    Agwa, Ibrahim Saad
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2024, 63 (01)
  • [49] An Investigation of Mechanical Properties of Recycled Carbon Fiber Reinforced Ultra-High-Performance Concrete
    Patchen, Andrew
    Young, Stephen
    Penumadu, Dayakar
    MATERIALS, 2023, 16 (01)
  • [50] Mechanical Properties of Fiber-Reinforced Permeable Geopolymer Concrete
    Xu, Lina
    Liu, Qilong
    Ding, Xu
    Sun, Shuang
    Huang, Zhanfang
    MATERIALS, 2023, 16 (17)