Density of the polynomials in Hardy and Bergman spaces of slit domains

被引:2
|
作者
Akeroyd, John R. [1 ]
机构
[1] Univ Arkansas, Dept Math, Fayetteville, AR 72701 USA
来源
ARKIV FOR MATEMATIK | 2011年 / 49卷 / 01期
关键词
APPROXIMATION;
D O I
10.1007/s11512-009-0110-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any t, 0 <t<infinity, there is a Jordan are Gamma with endpoints 0 and 1 such that Gamma\{1}subset of D:={z:vertical bar z vertical bar <1} and with the property that the analytic polynomials are dense in the Bergman space A(t) (D\Gamma). It is also shown that one can go further in the Hardy space setting and find such a Gamma that is in fact the graph of a continuous real-valued function on [0,1], where the polynomials are dense in H(t) (D\Gamma); improving upon a result in an earlier paper.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Hardy spaces and analytic continuation of Bergman spaces
    Bertram, W
    Hilgert, J
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1998, 126 (03): : 435 - 482
  • [22] Pointwise multipliers from weighted Bergman spaces and hardy spaces to weighted Bergman spaces
    Zhao, R
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2004, 29 (01) : 139 - 150
  • [23] RECOVERY PROBLEMS IN HARDY AND BERGMAN SPACES
    OSIPENKO, KY
    STESIN, MI
    MATHEMATICAL NOTES, 1991, 49 (3-4) : 395 - 401
  • [24] Integration Operators on Hardy and Bergman Spaces
    El-Fallah, O.
    Mkadmi, F.
    Omari, Y.
    RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [25] Bergman projections and operators on hardy spaces
    Cohn, WS
    JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (01) : 1 - 19
  • [26] Integration Operators on Hardy and Bergman Spaces
    O. El-Fallah
    F. Mkadmi
    Y. Omari
    Results in Mathematics, 2022, 77
  • [27] Projective generators in Hardy and Bergman spaces
    Korenblum, B
    Lance, TL
    Stessin, MI
    BULLETIN DES SCIENCES MATHEMATIQUES, 2000, 124 (06): : 435 - 445
  • [28] Density of polyanalytic polynomials in complex and quaternionic polyanalytic weighted Bergman spaces
    Gal, Sorin G.
    Sabadini, Irene
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (04) : 533 - 553
  • [29] Bergman spaces on disconnected domains
    Aleman, A
    Richter, S
    Ross, WT
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (02): : 225 - 243
  • [30] Orthogonal polynomials in weighted Bergman spaces
    Mina-Diaz, Erwin
    JOURNAL OF APPROXIMATION THEORY, 2023, 296