Evaluating the Robustness of an Appearance-based Gaze Estimation Method for Multimodal Interfaces

被引:5
|
作者
Li, Nanxiang [1 ]
Busso, Carlos [1 ]
机构
[1] Univ Texas Dallas, MSP Lab, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
Gaze estimation; eigenspace analysis; computer user interface; multimodal interfaces;
D O I
10.1145/2522848.2522876
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given the crucial role of eye movements on visual attention, tracking gaze behaviors is an important research problem in various applications including biometric identification, attention modeling and human-computer interaction. Most of the existing gaze tracking methods require a repetitive system calibration process and are sensitive to the user's head movements. Therefore, they cannot be easily implemented in current multimodal interfaces. This paper investigates an appearance-based approach for gaze estimation that requires minimum calibration and is robust against head motion. The approach consists in building an orthonormal basis, or eigenspace, of the eye appearance with principal component analysis (PCA). Unlike previous studies, we build the eigenspace using image patches displaying both eyes. The projections into the basis are used to train regression models which predict the gaze location. The approach is trained and tested with a new multimodal corpus introduced in this paper. We consider several variables such as the distance between user and the computer monitor, and head movement. The evaluation includes the performance of the proposed gaze estimation system with and without head movement. It also evaluates the results in subject-dependent versus subject-independent conditions under different distances. We report promising results which suggest that the proposed gaze estimation approach is a feasible and flexible scheme to facilitate gaze-based multimodal interfaces.
引用
收藏
页码:91 / 98
页数:8
相关论文
共 50 条
  • [41] TabletGaze: dataset and analysis for unconstrained appearance-based gaze estimation in mobile tablets
    Huang, Qiong
    Veeraraghavan, Ashok
    Sabharwal, Ashutosh
    MACHINE VISION AND APPLICATIONS, 2017, 28 (5-6) : 445 - 461
  • [42] Appearance-based Gaze Estimation with Multi-Modal Convolutional Neural Networks
    Wang, Fei
    Wang, Yan
    Li, Teng
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2021, 2021, 11884
  • [43] Appearance-Based Gaze Tracking: A Brief Review
    Jiang, Jiaqi
    Zhou, Xiaolong
    Chan, Sixian
    Chen, Shengyong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI, 2019, 11745 : 629 - 640
  • [44] TabletGaze: dataset and analysis for unconstrained appearance-based gaze estimation in mobile tablets
    Qiong Huang
    Ashok Veeraraghavan
    Ashutosh Sabharwal
    Machine Vision and Applications, 2017, 28 : 445 - 461
  • [45] CI-Net: Appearance-Based Gaze Estimation via Cooperative Network
    Luo, Yuan
    Chen, Jiangtao
    Chen, Jian
    IEEE ACCESS, 2022, 10 : 78739 - 78746
  • [46] SuperVision: Self-Supervised Super-Resolution for Appearance-Based Gaze Estimation
    O'Shea, Galen
    Komeili, Majid
    GAZE MEETS MACHINE LEARNING WORKSHOP, 2023, 226 : 197 - 217
  • [47] Appearance-based gaze estimation with feature fusion of multi-level information elements
    Ren, Zhonghe
    Fang, Fengzhou
    Hou, Gaofeng
    Li, Zihao
    Niu, Rui
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (03) : 1080 - 1109
  • [48] InvisibleEye: Fully Embedded Mobile Eye Tracking Using Appearance-Based Gaze Estimation
    Steil, Julian
    Tonsen, Marc
    Sugano, Yusuke
    Bulling, Andreas
    GETMOBILE-MOBILE COMPUTING & COMMUNICATIONS REVIEW, 2019, 23 (02) : 30 - 34
  • [49] A Deep Learning Approach to Appearance-Based Gaze Estimation under Head Pose Variations
    Sun, Hsin-Pei
    Yang, Cheng-Hsun
    Lai, Shang-Hong
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 935 - 940
  • [50] Democratizing eye-tracking? Appearance-based gaze estimation with improved attention branch
    Kuric, Eduard
    Demcak, Peter
    Majzel, Jozef
    Nguyen, Giang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 149