Phase resolved observation of spin wave modes in antidot lattices

被引:10
|
作者
Gross, Felix [1 ]
Zelent, Mateusz [2 ]
Gangwar, Ajay [3 ]
Mamica, Slawomir [2 ]
Gruszecki, Pawel [2 ]
Werner, Matthias [1 ]
Schuetz, Gisela [1 ]
Weigand, Markus [4 ]
Goering, Eberhard J. [1 ]
Back, Christian H. [5 ]
Krawczyk, Maciej [2 ]
Graefe, Joachim [1 ]
机构
[1] Max Planck Inst Intelligent Syst, D-70569 Stuttgart, Germany
[2] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[3] Univ Regensburg, Dept Phys, D-93053 Regensburg, Germany
[4] Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany
[5] Tech Univ Munich, D-85748 Garching, Germany
关键词
Band structure - Antennas;
D O I
10.1063/5.0045142
中图分类号
O59 [应用物理学];
学科分类号
摘要
Antidot lattices have proven to be a powerful tool for spin wave band structure manipulation. Utilizing time-resolved scanning transmission x-ray microscopy, we are able to experimentally image edge-localized spin wave modes in an antidot lattice with a lateral confinement down to < 80 nm x 130 nm. At higher frequencies, spin wave dragonfly patterns formed by the demagnetizing structures of the antidot lattice are excited. Evaluating their relative phase with respect to the propagating mode within the antidot channel reveals that the dragonfly modes are not directly excited by the antenna but need the propagating mode as an energy mediator. Furthermore, micromagnetic simulations reveal that additional dispersion branches exist for a tilted external field geometry. These branches correspond to asymmetric spin wave modes that cannot be excited in a non-tilted field geometry due to the symmetry restriction. In addition to the band having a negative slope, these asymmetric modes also cause an unexpected transformation of the band structure, slightly reaching into the otherwise empty bandgap between the low frequency edge modes and the fundamental mode. The presented phase resolved investigation of spin waves is a crucial step for spin wave manipulation in magnonic crystals.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Tunable spin wave spectra in two-dimensional Ni80Fe20 antidot lattices with varying lattice symmetry
    Mandal, R.
    Barman, S.
    Saha, S.
    Otani, Y.
    Barman, A.
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (05)
  • [42] Real-space observation of standing spin-wave modes in a magnetic disk
    Hioki, Tomosato
    Araki, Tomonao
    Umemura, Kosuke
    Hoshi, Koujiro
    Saitoh, Eiji
    APPLIED PHYSICS LETTERS, 2022, 121 (13)
  • [43] PHASE AND AMPLITUDE COLLECTIVE MODES OF AN INCOMMENSURATE SPIN-DENSITY WAVE
    PSALTAKIS, GC
    SOLID STATE COMMUNICATIONS, 1984, 51 (07) : 535 - 538
  • [45] Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices
    Tahir, N.
    Zelent, M.
    Gieniusz, R.
    Krawczyk, M.
    Maziewski, A.
    Wojciechowski, T.
    Ding, J.
    Adeyeye, A. O.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (02)
  • [46] Spin Wave Dispersion in Permalloy Antidot Array With Alternating Holes Diameter
    Madami, M.
    Tacchi, S.
    Gubbiotti, G.
    Carlotti, G.
    Ding, J.
    Adeyeye, A. O.
    Klos, J. W.
    Krawczyk, M.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 3093 - 3096
  • [47] Graphene antidot lattices: Designed defects and spin qubits (vol 100, art no 136804, 2008)
    Pedersen, Thomas G.
    Flindt, Christian
    Pedersen, Jesper
    Mortensen, Niels Asger
    Jauho, Antti-Pekka
    Pedersen, Kjeld
    PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [48] THE OBSERVATION OF SURFACE SPIN-WAVE MODES IN NICKEL FILMS EVAPORATED AT OBLIQUE-INCIDENCE
    AHMAD, NH
    HAMEED, I
    NAJIM, JA
    PHYSICA B-CONDENSED MATTER, 1994, 203 (1-2) : 17 - 21
  • [49] Observation of propagating edge spin waves modes
    Lara, A.
    Metlushko, V.
    Aliev, F. G.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (21)
  • [50] Spin wave propagation through an antidot lattice and a concept of a tunable magnonic filter
    Semenova, E. K.
    Berkov, D. V.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (01)