Quantum Networks with Deterministic Spin-Photon Interfaces

被引:55
|
作者
Borregaard, Johannes [1 ]
Sorensen, Anders Sondberg [2 ]
Lodahl, Peter [2 ]
机构
[1] Univ Copenhagen, Dept Math Sci, QMATH, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
quantum communication; quantum networks; quantum optics; solid state systems; ATOMIC ENSEMBLES; SINGLE ATOMS; STATE; ENTANGLEMENT; COMMUNICATION; NANOPHOTONICS; REPEATERS; CAVITY;
D O I
10.1002/qute.201800091
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This report considers how recent experimental progress on deterministic solid-state spin-photon interfaces enables the construction of a number of key elements of quantum networks. After reviewing some of the recent experimental achievements, a discussion of their integration into Bell state analyzers, quantum non-demolition detection, and photonic cluster state generation is presented. Finally, it is outlined how these elements can be used for long-distance entanglement generation and quantum key distribution in a quantum network.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Silicon vacancy center in 4H-SiC: Electronic structure and spin-photon interfaces
    Soykal, Oe O.
    Dev, Pratibha
    Economou, Sophia E.
    PHYSICAL REVIEW B, 2016, 93 (08)
  • [42] Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
    Javadi, Alisa
    Ding, Dapeng
    Appel, Martin Hayhurst
    Mahmoodian, Sahand
    Lobl, Matthias Christian
    Sollner, Immo
    Schott, Ruediger
    Papon, Camille
    Pregnolato, Tommaso
    Stobbe, Soren
    Midolo, Leonardo
    Schroder, Tim
    Wieck, Andreas Dirk
    Ludwig, Arne
    Warburton, Richard John
    Lodahl, Peter
    NATURE NANOTECHNOLOGY, 2018, 13 (05) : 398 - 403
  • [43] CONDITION FOR A SUPER RADIANT PHASE-TRANSITION IN A SPIN-PHOTON MODEL OF QUANTUM OPTICS
    PICKLES, JB
    THOMPSON, BV
    PHYSICS LETTERS A, 1974, A 48 (06) : 487 - 488
  • [44] Energy-efficient quantum non-demolition measurement with a spin-photon interface
    Maffei, Maria
    Goes, Bruno O.
    Wein, Stephen C.
    Jordan, Andrew N.
    Lanco, Loic
    Auffeves, Alexia
    QUANTUM, 2023, 7
  • [45] Input-output theory for spin-photon coupling in Si double quantum dots
    Benito, M.
    Mi, X.
    Taylor, J. M.
    Petta, J. R.
    Burkard, Guido
    PHYSICAL REVIEW B, 2017, 96 (23)
  • [46] Synchronized spin-photon coupling in a microwave cavity
    Grigoryan, Vahram L.
    Shen, Ka
    Xia, Ke
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [47] Spin-Photon Coupling in Organic Chiral Crystals
    Gao, Mingsheng
    Wang, Zhongxuan
    Zhang, Xiao
    Hao, Xiaotao
    Qin, Wei
    NANO LETTERS, 2019, 19 (12) : 9008 - 9012
  • [48] Irreducible tensor form for the spin-photon coupling
    Jursenas, Rytis
    PHYSICS LETTERS A, 2017, 381 (38) : 3295 - 3299
  • [49] EFFECT OF SPIN-PHOTON AND SPIN-PHONON INTERACTION ON SPIN DIFFUSION
    SABIROV, RK
    FIZIKA TVERDOGO TELA, 1979, 21 (07): : 1965 - 1970
  • [50] Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength
    De Greve, Kristiaan
    Yu, Leo
    McMahon, Peter L.
    Pelc, Jason S.
    Natarajan, Chandra M.
    Kim, Na Young
    Abe, Eisuke
    Maier, Sebastian
    Schneider, Christian
    Kamp, Martin
    Hoefling, Sven
    Hadfield, Robert H.
    Forchel, Alfred
    Fejer, M. M.
    Yamamoto, Yoshihisa
    NATURE, 2012, 491 (7424) : 421 - +