Constrained clustering and Kohonen self-organizing maps

被引:11
|
作者
Ambroise, C
Govaert, G
机构
[1] URA CNRS 817, Univ. Technol. de Compiegne, 60206 Compiègne Cedex
关键词
EM algorithm; Gaussian mixture; Kohonen maps; constrained clustering;
D O I
10.1007/BF01246104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Self-Organizing Feature Maps (SOFM; Kohonen 1984) algorithm is a well-known example of unsupervised learning in connectionism and is a clustering method closely related to the k-means. Generally the data set is available before running the algorithm and the clustering problem can be approached by an inertia criterion optimization. In this paper we consider the probabilistic approach to this problem. We propose a new algorithm based on the Expectation Maximization principle (EM; Dempster, Laird, and Rubin 1977). The new method can be viewed as a Kohonen type of EM and gives a better insight into the SOFM according to constrained clustering. We perform numerical experiments and compare our results with the standard Kohonen approach.
引用
收藏
页码:299 / 313
页数:15
相关论文
共 50 条
  • [41] Self-organizing maps of Kohonen as a river clustering tool within the methodology for determining regional ecological flows ELOHA
    Mapas auto-organizados de Kohonen como una herramienta de agrupación de ríos dentro de la metodología para determinar los caudales ecológicos regionales ELOHA
    2013, Pontificia Universidad Javeriana (17): : 311 - 323
  • [42] Clustering iOS Executable Using Self-Organizing Maps
    Yu, Fang
    Huang, Shin-yin
    Chiou, Li-ching
    Tsaih, Rua-huan
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [43] INTEGRATION OF GUSTAFSON-KESSEL ALGORITHM AND KOHONEN'S SELF-ORGANIZING MAPS FOR UNSUPERVISED CLUSTERING OF SEISMIC ATTRIBUTES
    Eftekharifar, Mehdi
    Riahi, M. Ali
    Kharrat, R.
    JOURNAL OF SEISMIC EXPLORATION, 2009, 18 (04): : 315 - 328
  • [44] IMPROVEMENTS TO KOHONEN SELF-ORGANIZING ALGORITHM
    ZHAO, Z
    ELECTRONICS LETTERS, 1994, 30 (06) : 502 - 503
  • [45] Hierarchical clustering of self-organizing maps for cloud classification
    Ambroise, C
    Sèze, G
    Badran, F
    Thiria, S
    NEUROCOMPUTING, 2000, 30 (1-4) : 47 - 52
  • [46] Topical clustering of biomedical abstracts by self-organizing maps
    Fattore, A
    Arrigo, P
    BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE II, 2006, : 481 - 490
  • [47] Quantitative self-organizing maps for clustering electron tomograms
    Pascual-Montano, A
    Taylor, KA
    Winkler, H
    Pascual-Marqui, RD
    Carazo, JM
    JOURNAL OF STRUCTURAL BIOLOGY, 2002, 138 (1-2) : 114 - 122
  • [48] Hierarchical self-organizing maps for clustering spatiotemporal data
    Hagenauer, Julian
    Helbich, Marco
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (10) : 2026 - 2042
  • [49] A clustering method using hierarchical self-organizing maps
    Endo, M
    Ueno, M
    Tanabe, T
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 32 (1-2): : 105 - 118
  • [50] A Clustering Method Using Hierarchical Self-Organizing Maps
    Masahiro Endo
    Masahiro Ueno
    Takaya Tanabe
    Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 105 - 118