Star-Galaxy Image Separation with Computationally Efficient Gaussian Process Classification

被引:5
|
作者
Muyskens, Amanda L. [1 ]
Goumiri, Imene R. [2 ]
Priest, Benjamin W. [3 ]
Schneider, Michael D. [2 ]
Armstrong, Robert E. [2 ]
Bernstein, Jason [1 ]
Dana, Ryan [4 ]
机构
[1] Lawrence Livermore Natl Lab Livermore, Computat Engn Div, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab Livermore, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[3] Lawrence Livermore Natl Lab Livermore, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[4] Lawrence Livermore Natl Lab Livermore, Comp Directorate, Livermore, CA 94550 USA
来源
ASTRONOMICAL JOURNAL | 2022年 / 163卷 / 04期
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
D O I
10.3847/1538-3881/ac4e93
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a novel method for discerning optical telescope images of stars from those of galaxies using Gaussian processes (GPs). Although applications of GPs often struggle in high-dimensional data modalities such as optical image classification, we show that a low-dimensional embedding of images into a metric space defined by the principal components of the data suffices to produce high-quality predictions from real large-scale survey data. We develop a novel method of GP classification hyperparameter training that scales approximately linearly in the number of image observations, which allows for application of GP models to large-size Hyper Suprime-Cam Subaru Strategic Program data. In our experiments, we evaluate the performance of a principal component analysis embedded GP predictive model against other machine-learning algorithms, including a convolutional neural network and an image photometric morphology discriminator. Our analysis shows that our methods compare favorably with current methods in optical image classification while producing posterior distributions from the GP regression that can be used to quantify object classification uncertainty. We further describe how classification uncertainty can be used to efficiently parse large-scale survey imaging data to produce high-confidence object catalogs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] AutoSourceID-Classifier Star-galaxy classification using a convolutional neural network with spatial information
    Stoppa, F.
    Bhattacharyya, S.
    de Austri, R. Ruiz
    Vreeswijk, P.
    Caron, S.
    Zaharijas, G.
    Bloemen, S.
    Principe, G.
    Malyshev, D.
    Vodeb, V.
    Groot, P. J.
    Cator, E.
    Nelemans, G.
    ASTRONOMY & ASTROPHYSICS, 2023, 680
  • [22] A Computationally Efficient Neural Network For Faster Image Classification
    Paul, Ananya
    Tejpratap, G. V. S. L.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 154 - 159
  • [23] Gaussian Process Classification for Galaxy Blend Identification in LSST
    Buchanan, James J.
    Schneider, Michael D.
    Armstrong, Robert E.
    Muyskens, Amanda L.
    Priest, Benjamin W.
    Dana, Ryan J.
    ASTROPHYSICAL JOURNAL, 2022, 924 (02):
  • [24] Efficient approaches to Gaussian Process classification
    Csató, L
    Fokoué, E
    Opper, M
    Schottky, B
    Winther, O
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 251 - 257
  • [25] Computationally Efficient Bayesian Learning of Gaussian Process State Space Models
    Svensson, Andreas
    Solin, Arno
    Sarkka, Simo
    Schon, Thomas B.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 213 - 221
  • [26] Computationally Efficient Rigid-Body Gaussian Process for Motion Dynamics
    Lang, Muriel
    Hirche, Sandra
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03): : 1601 - 1608
  • [27] Computationally efficient algorithm for Gaussian Process regression in case of structured samples
    Belyaev, M.
    Burnaev, E.
    Kapushev, Y.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (04) : 499 - 513
  • [28] Computationally efficient algorithm for Gaussian Process regression in case of structured samples
    M. Belyaev
    E. Burnaev
    Y. Kapushev
    Computational Mathematics and Mathematical Physics, 2016, 56 : 499 - 513
  • [29] Gaussian process classification using image deformation
    Williams, David P.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 605 - 608
  • [30] JGPR: a computationally efficient multi-target Gaussian process regression algorithm
    Mohammad Nabati
    Seyed Ali Ghorashi
    Reza Shahbazian
    Machine Learning, 2022, 111 : 1987 - 2010