Star-Galaxy Image Separation with Computationally Efficient Gaussian Process Classification

被引:5
|
作者
Muyskens, Amanda L. [1 ]
Goumiri, Imene R. [2 ]
Priest, Benjamin W. [3 ]
Schneider, Michael D. [2 ]
Armstrong, Robert E. [2 ]
Bernstein, Jason [1 ]
Dana, Ryan [4 ]
机构
[1] Lawrence Livermore Natl Lab Livermore, Computat Engn Div, Livermore, CA 94550 USA
[2] Lawrence Livermore Natl Lab Livermore, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[3] Lawrence Livermore Natl Lab Livermore, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[4] Lawrence Livermore Natl Lab Livermore, Comp Directorate, Livermore, CA 94550 USA
来源
ASTRONOMICAL JOURNAL | 2022年 / 163卷 / 04期
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
D O I
10.3847/1538-3881/ac4e93
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce a novel method for discerning optical telescope images of stars from those of galaxies using Gaussian processes (GPs). Although applications of GPs often struggle in high-dimensional data modalities such as optical image classification, we show that a low-dimensional embedding of images into a metric space defined by the principal components of the data suffices to produce high-quality predictions from real large-scale survey data. We develop a novel method of GP classification hyperparameter training that scales approximately linearly in the number of image observations, which allows for application of GP models to large-size Hyper Suprime-Cam Subaru Strategic Program data. In our experiments, we evaluate the performance of a principal component analysis embedded GP predictive model against other machine-learning algorithms, including a convolutional neural network and an image photometric morphology discriminator. Our analysis shows that our methods compare favorably with current methods in optical image classification while producing posterior distributions from the GP regression that can be used to quantify object classification uncertainty. We further describe how classification uncertainty can be used to efficiently parse large-scale survey imaging data to produce high-confidence object catalogs.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Morphological Star-Galaxy Separation
    Slater, Colin T.
    Ivezic, Zeljko
    Lupton, Robert H.
    ASTRONOMICAL JOURNAL, 2020, 159 (02):
  • [2] Fuzzy classifier for star-galaxy separation
    Mähönen, P
    Frantti, T
    ASTROPHYSICAL JOURNAL, 2000, 541 (01): : 261 - 263
  • [3] A Bayesian approach to star-galaxy classification
    Henrion, Marc
    Mortlock, Daniel J.
    Hand, David J.
    Gandy, Axel
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 412 (04) : 2286 - 2302
  • [4] Star-galaxy separation in the AKARI NEP deep field
    Solarz, A.
    Pollo, A.
    Takeuchi, T. T.
    Pepiak, A.
    Matsuhara, H.
    Wada, T.
    Oyabu, S.
    Takagi, T.
    Goto, T.
    Ohyama, Y.
    Pearson, C. P.
    Hanami, H.
    Ishigaki, T.
    ASTRONOMY & ASTROPHYSICS, 2012, 541
  • [5] A hybrid ensemble learning approach to star-galaxy classification
    Kim, Edward J.
    Brunner, Robert J.
    Kind, Matias Carrasco
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 507 - 521
  • [6] Galaxy And Mass Assembly (GAMA): the input catalogue and star-galaxy separation
    Baldry, I. K.
    Robotham, A. S. G.
    Hill, D. T.
    Driver, S. P.
    Liske, J.
    Norberg, P.
    Bamford, S. P.
    Hopkins, A. M.
    Loveday, J.
    Peacock, J. A.
    Cameron, E.
    Croom, S. M.
    Cross, N. J. G.
    Doyle, I. F.
    Dye, S.
    Frenk, C. S.
    Jones, D. H.
    van Kampen, E.
    Kelvin, L. S.
    Nichol, R. C.
    Parkinson, H. R.
    Popescu, C. C.
    Prescott, M.
    Sharp, R. G.
    Sutherland, W. J.
    Thomas, D.
    Tuffs, R. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 404 (01) : 86 - 100
  • [7] A difference boosting neural network for automated star-galaxy classification
    Philip, NS
    Wadadekar, Y
    Kembhavi, A
    Joseph, KB
    ASTRONOMY & ASTROPHYSICS, 2002, 385 (03) : 1119 - 1126
  • [8] The miniJPAS survey: star-galaxy classification using machine learning
    Baqui, P. O.
    Marra, V.
    Casarini, L.
    Angulo, R.
    Diaz-Garcia, L. A.
    Hernandez-Monteagudo, C.
    Lopes, P. A. A.
    Lopez-Sanjuan, C.
    Muniesa, D.
    Placco, V. M.
    Quartin, M.
    Queiroz, C.
    Sobral, D.
    Solano, E.
    Tempel, E.
    Varela, J.
    Vilchez, J. M.
    Abramo, R.
    Alcaniz, J.
    Benitez, N.
    Bonoli, S.
    Carneiro, S.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    de Amorim, A. L.
    de Oliveira, C. M.
    Dupke, R.
    Ederoclite, A.
    Gonzalez Delgado, R. M.
    Marin-Franch, A.
    Moles, M.
    Ramio, H. Vazquez
    Sodre, L.
    Taylor, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 645 (645)
  • [9] STAR-GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING
    Fadely, Ross
    Hogg, David W.
    Willman, Beth
    ASTROPHYSICAL JOURNAL, 2012, 760 (01):
  • [10] Star-galaxy classification using deep convolutional neural networks
    Kim, Edward J.
    Brunner, Robert J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 4463 - 4475