CONVERGENCE PROPERTY OF AN INTERIOR PENALTY APPROACH TO PRICING AMERICAN OPTION

被引:22
|
作者
Zhang, Kai [1 ,2 ]
Wang, Song [3 ]
机构
[1] Shenzhen Univ, Sch Business, Shenzhen 518060, Peoples R China
[2] Guosen Secur Co Ltd, Postdoctoral Programme, Shenzhen 518060, Peoples R China
[3] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Complementarity Problem; Variational Inequalities; Option Pricing; Penalty Method;
D O I
10.3934/jimo.2011.7.435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper establishes a convergence theory for an interior penalty method for a linear complementarity problem governing American option valuation. By introducing an interior penalty term, we first transform the complementarity problem into a nonlinear degenerated Black-Scholes PDE. We then prove that the PDE is uniquely solvable and its solution converges to that of the original complementarity problem. Furthermore, we demonstrate the advantages of the interior penalty method over exterior penalty methods by comparing it with an existing exterior penalty method.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 50 条
  • [41] Convergence of the least squares Monte Carlo approach to American option valuation
    Stentoft, L
    MANAGEMENT SCIENCE, 2004, 50 (09) : 1193 - 1203
  • [42] CONVERGENCE ANALYSIS OF AN ADAPTIVE INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD
    Hoppe, R. H. W.
    Kanschat, G.
    Warburton, T.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 47 (01) : 534 - 550
  • [43] Convergence of the interior penalty integral equation domain decomposition method
    Mi B.
    Hu Y.
    Liu Z.
    Qin L.
    Journal of Electronic Science and Technology, 2019, 17 (02) : 152 - 160
  • [44] Convergence of the Interior Penalty Integral Equation Domain Decomposition Method
    Bo Mi
    Yu Hu
    Zhang Liu
    Ling Qin
    Journal of Electronic Science and Technology, 2019, 17 (02) : 152 - 160
  • [45] Pricing of American Parisian option as executive option based on the least-squares Monte Carlo approach
    Zhuang, Yangyang
    Tang, Pan
    JOURNAL OF FUTURES MARKETS, 2023, 43 (10) : 1469 - 1496
  • [46] American option pricing under stochastic volatility: A simulation-based approach
    Chockalingam, Arunachalam
    Muthuraman, Kumar
    PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 971 - +
  • [47] On the enhanced convergence of standard lattice methods for option pricing
    Widdicks, M
    Andricopoulos, AD
    Newton, DP
    Duck, PW
    JOURNAL OF FUTURES MARKETS, 2002, 22 (04) : 315 - 338
  • [48] American option pricing under double Heston stochastic volatility model: simulation and strong convergence analysis
    Fallah, Somayeh
    Mehrdoust, Farshid
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (07) : 1322 - 1339
  • [49] CONVERGENCE OF A LEAST-SQUARES MONTE CARLO ALGORITHM FOR AMERICAN OPTION PRICING WITH DEPENDENT SAMPLE DATA
    Zanger, Daniel Z.
    MATHEMATICAL FINANCE, 2018, 28 (01) : 447 - 479
  • [50] Pricing American bond options using a penalty method
    Zhang, Kai
    Wang, Song
    AUTOMATICA, 2012, 48 (03) : 472 - 479