CONVERGENCE PROPERTY OF AN INTERIOR PENALTY APPROACH TO PRICING AMERICAN OPTION

被引:22
|
作者
Zhang, Kai [1 ,2 ]
Wang, Song [3 ]
机构
[1] Shenzhen Univ, Sch Business, Shenzhen 518060, Peoples R China
[2] Guosen Secur Co Ltd, Postdoctoral Programme, Shenzhen 518060, Peoples R China
[3] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Complementarity Problem; Variational Inequalities; Option Pricing; Penalty Method;
D O I
10.3934/jimo.2011.7.435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper establishes a convergence theory for an interior penalty method for a linear complementarity problem governing American option valuation. By introducing an interior penalty term, we first transform the complementarity problem into a nonlinear degenerated Black-Scholes PDE. We then prove that the PDE is uniquely solvable and its solution converges to that of the original complementarity problem. Furthermore, we demonstrate the advantages of the interior penalty method over exterior penalty methods by comparing it with an existing exterior penalty method.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 50 条
  • [1] Convergence analysis of a monotonic penalty method for American option pricing
    Zhang, Kai
    Yang, Xiaoqi
    Teo, Kok Lay
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (02) : 915 - 926
  • [2] Convergence analysis of power penalty method for American bond option pricing
    K. Zhang
    K. L. Teo
    Journal of Global Optimization, 2013, 56 : 1313 - 1323
  • [3] Convergence analysis of power penalty method for American bond option pricing
    Zhang, K.
    Teo, K. L.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1313 - 1323
  • [4] A POWER PENALTY APPROACH TO AMERICAN OPTION PRICING WITH JUMP DIFFUSION PROCESSES
    Zhang, Kai
    Yang, Xiaoqi
    Teo, Kok Lay
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (04) : 783 - 799
  • [5] Numerical performance of penalty method for American option pricing
    Zhang, K.
    Yang, X. Q.
    Wang, S.
    Teo, K. L.
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (05): : 737 - 752
  • [6] AMERICAN OPTION PRICING WITH REGRESSION: CONVERGENCE ANALYSIS
    Liu, Chen
    Schellhorn, Henry
    Peng, Qidi
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2019, 22 (08)
  • [7] Finite Difference Approach to Penalty Methods for Pricing Two-Factor American Put Option
    Koleva, Miglena N.
    Vulkov, Lubin G.
    PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [8] Penalty method for indifference pricing of American option in a liquidity switching market
    Gyulov, Tihomir B.
    Koleva, Miglena N.
    Applied Numerical Mathematics, 2022, 172 : 525 - 545
  • [9] Penalty method for indifference pricing of American option in a liquidity switching market
    Gyulov, Tihomir B.
    Koleva, Miglena N.
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 525 - 545
  • [10] On convergence of a semi-analytical method for American option pricing
    Deng, XT
    Gu, YG
    Wang, SY
    Zhang, SM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 313 (01) : 353 - 365