A New Multimedia Documents Clustering Approach based on Feature Patterns Similarity

被引:0
|
作者
Pushpalatha, K. [1 ]
Ananthanarayana, V. S. [2 ]
机构
[1] Sahyadri Coll Engn & Management, Dept Comp Sci & Engn, Mangalore 575007, India
[2] Natl Inst Technol Karnataka, Dept Informat Technol, Mangalore 575025, India
关键词
Multimedia Document; Clustering; Feature Patterns; Similarity; Multimodal;
D O I
10.1109/ISM.2017.52
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid advances in digital technology, the multimedia documents have been growing ubiquitously. The analysis of this huge repository of multimedia documents requires efficient organization of documents. Multimedia document clustering organizes the multimedia documents with common multimedia topics. The important step of multimedia document clustering is computing the similarity between multimedia documents. The multimodal objects of multimedia documents are described by the feature patterns. Hence, the feature patterns of multimedia objects play the major role in computing the similarity of multimedia documents. In this paper, we propose an feature pattern similarity based clustering approach for multimedia documents. Experimental results show that the proposed clustering approach clusters the multimedia documents efficiently and outperform the competitive methods.
引用
收藏
页码:296 / 299
页数:4
相关论文
共 50 条
  • [31] Similarity-based clustering for patterns of extreme values
    de Carvalho, Miguel
    Huser, Raphael
    Rubio, Rodrigo
    STAT, 2023, 12 (01):
  • [32] Dynamic Feature Selection Based on Clustering Algorithm and Individual Similarity
    Dantas, Carine A.
    Nunes, Romulo O.
    Canuto, Anne M. P.
    Xavier-Junior, Joao C.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 467 - 474
  • [33] An Innovative Approach to classify and Retrieve Text Documents Using Feature Extraction and Hierarchical Clustering Based on Ontology
    Patil, Aradhana R.
    Manjrekar, Amrita A.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, ANALYTICS AND SECURITY TRENDS (CAST), 2016, : 371 - 376
  • [35] Comparison of similarity measures for clustering Turkish documents
    Madylova, Ainura
    Oguducu, Sule Guenduez
    INTELLIGENT DATA ANALYSIS, 2009, 13 (05) : 815 - 832
  • [36] An Evolutionary Attribute Clustering and Selection Method Based on Feature Similarity
    Hong, Tzung-Pei
    Wang, Po-Cheng
    Ting, Chuan-Kang
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [37] Using structural similarity for clustering XML documents
    Aitelhadj, Ali
    Boughanem, Mohand
    Mezghiche, Mohamed
    Souam, Fatiha
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 32 (01) : 109 - 139
  • [38] Semantic Structural Similarity for Clustering XML Documents
    Kim, Tae-Soon
    Lee, Ju-Hong
    Song, Jae-Won
    ICHIT 2008: INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, PROCEEDINGS, 2008, : 552 - 557
  • [39] Structure and Content Similarity for Clustering XML Documents
    Zhang, Lijun
    Li, Zhanhuai
    Chen, Qun
    Li, Ning
    WEB-AGE INFORMATION MANAGEMENT, 2010, 6185 : 116 - 124
  • [40] Stemming and similarity measures for Arabic Documents Clustering
    L.T.T.I, University Sidi Mohamed Ben Abdellah , Fez, Morocco
    不详
    不详
    Int. Symp. I/V Commun. Mob. Networks, ISIVC,